blob: b4d9ad6f23c0cd90be615185e45f68c668d6d3e3 [file] [log] [blame]
import torch
import numpy as np
import io
import inspect
import math
import random
import re
import copy
import tempfile
import unittest
import warnings
import types
import pickle
import textwrap
from torch.utils.dlpack import from_dlpack, to_dlpack
from torch._six import inf, nan, string_classes
from itertools import product, combinations, permutations
from torch import multiprocessing as mp
from torch.testing._internal.common_utils import (
TestCase, TEST_WITH_ROCM, run_tests,
IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN,
do_test_dtypes, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, slowTest,
skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf, BytesIOContext,
skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName,
wrapDeterministicFlagAPITest, DeterministicGuard)
from multiprocessing.reduction import ForkingPickler
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
skipCUDAIfNoMagma, skipCUDAIfRocm,
onlyCUDA, onlyCPU,
dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast,
PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyOnCPUAndCUDA,
expectedAlertNondeterministic)
from typing import Dict, List
import torch.backends.quantized
import torch.testing._internal.data
from torch.testing._internal.common_cuda import tf32_on_and_off, tf32_is_not_fp32
# Protects against includes accidentally setting the default dtype
assert torch.get_default_dtype() is torch.float32
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
# Wrap base test class into a class to hide it from testing
# See https://stackoverflow.com/a/25695512
class AbstractTestCases:
# This is intentionally prefixed by an underscore. Otherwise pytest will try to
# run its methods as test cases.
class _TestTorchMixin(TestCase):
def _make_tensors(self, shape, val_range=(-100, 100), use_floating=True, use_integral=True,
use_complex=False) -> Dict[str, List[torch.Tensor]]:
float_types = [torch.double,
torch.float]
int_types = [torch.int64,
torch.int32,
torch.int16]
complex_types = [torch.complex64,
torch.complex128]
def make_contiguous(shape, dtype) -> torch.Tensor:
if dtype in float_types:
val = torch.randn(shape, dtype=dtype)
val = val * ((val_range[1] - val_range[0]) / (math.pi * 2.0))
val = val + ((val_range[1] - val_range[0]) / 2.0)
val = torch.clamp(val, min=val_range[0], max=val_range[1])
return val
result = torch.zeros(shape, dtype=dtype)
result.apply_(lambda x: random.randint(val_range[0], val_range[1]))
return result
def make_non_contiguous(shape, dtype) -> torch.Tensor:
contig = make_contiguous(shape, dtype)
non_contig = torch.empty(shape + (2, 2), dtype=dtype)[..., 0]
non_contig = non_contig.select(-1, -1)
non_contig.copy_(contig)
self.assertFalse(non_contig.is_contiguous())
return non_contig
def make_contiguous_slice(size, dtype) -> torch.Tensor:
contig = make_contiguous((1, size), dtype)
non_contig = contig[:1, 1:size - 1]
self.assertTrue(non_contig.is_contiguous())
return contig
types = []
if use_floating:
types += float_types
if use_integral:
types += int_types
if use_complex:
types += complex_types
tensors: Dict[str, List[torch.Tensor]] = {"cont": [], "noncont": [], "slice": []}
for dtype in types:
tensors["cont"].append(make_contiguous(shape, dtype))
tensors["noncont"].append(make_non_contiguous(shape, dtype))
tensors["slice"].append(make_contiguous_slice(sum(list(shape)), dtype))
return tensors
def test_dir(self):
dir(torch)
@wrapDeterministicFlagAPITest
def test_deterministic_flag(self):
for deterministic in [True, False]:
torch.set_deterministic(deterministic)
self.assertEqual(deterministic, torch.is_deterministic())
with self.assertRaisesRegex(RuntimeError, r"set_deterministic expects a bool, but got int"):
torch.set_deterministic(1)
def test_type_conversion_via_dtype_name(self):
x = torch.tensor([1])
self.assertEqual(x.byte().dtype, torch.uint8)
self.assertEqual(x.bool().dtype, torch.bool)
self.assertEqual(x.char().dtype, torch.int8)
self.assertEqual(x.double().dtype, torch.float64)
self.assertEqual(x.float().dtype, torch.float32)
self.assertEqual(x.half().dtype, torch.float16)
self.assertEqual(x.int().dtype, torch.int32)
self.assertEqual(x.bfloat16().dtype, torch.bfloat16)
def test_doc_template(self) -> None:
from torch._torch_docs import __file__ as doc_file
from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args
with open(doc_file, "r") as f:
doc_strs = f.read()
for doc_str in re.findall(r'add_docstr\((.*?),.*?("""|\'\'\')(.*?)("""|\'\'\')\)', doc_strs, re.MULTILINE | re.DOTALL):
for common_args in [multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args]:
for k, v in common_args.items():
self.assertNotIn(v, doc_str[2], 'The argument description "{}" in {} can be '
'replaced by {{{}}}'.format(v, doc_str[0], k))
def test_doc(self):
checked_types = (types.MethodType, types.FunctionType,
types.BuiltinFunctionType, types.BuiltinMethodType)
def test_namespace(ns, *skips):
if isinstance(ns, object):
ns_name = ns.__class__.__name__
else:
ns_name = ns.__name__
skip_regexes = []
for r in skips:
if isinstance(r, string_classes):
skip_regexes.append(re.compile('^{}$'.format(re.escape(r))))
else:
skip_regexes.append(r)
for name in dir(ns):
if name.startswith('_'):
continue
if name in ['real', 'imag']:
y = torch.randn(1, dtype=torch.cfloat)
var = getattr(y, name)
else:
var = getattr(ns, name)
if not isinstance(var, checked_types):
continue
doc = var.__doc__
has_doc = doc is not None and len(doc.strip()) > 0
full_name = ns_name + '.' + name
if any(r.match(name) for r in skip_regexes):
self.assertFalse(has_doc,
'New docs have been added for {}, please remove '
'it from the skipped list in TestTorch.test_doc'.format(full_name))
else:
self.assertTrue(has_doc, '{} is missing documentation'.format(full_name))
# FIXME: All of the following should be marked as expected failures
# so that it is easier to tell when missing has been added.
# FIXME: fix all the skipped ones below!
test_namespace(torch.randn(1),
'as_strided_',
re.compile('^clamp_(min|max)_?$'),
'is_distributed',
'is_nonzero',
'is_same_size',
'log_softmax',
'map2_',
'new',
'reinforce',
'relu',
'relu_',
'prelu',
'resize',
'resize_as',
'softmax',
'split_with_sizes',
'unsafe_split_with_sizes',
)
test_namespace(torch.nn)
test_namespace(torch.nn.functional, 'assert_int_or_pair')
# TODO: add torch.* tests when we have proper namespacing on ATen functions
# test_namespace(torch)
def test_msnpu_error(self):
with self.assertRaisesRegex(RuntimeError, "support for msnpu"):
torch.zeros(1, device=torch.device('msnpu'))
def test_has_storage(self):
self.assertIsNotNone(torch.Tensor().storage())
self.assertIsNotNone(torch.Tensor(0).storage())
self.assertIsNotNone(torch.Tensor([]).storage())
self.assertIsNotNone(torch.Tensor().clone().storage())
self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage())
self.assertIsNotNone(torch.Tensor().new().storage())
def test_where_invalid_device(self):
if torch.cuda.is_available():
for devices in [('cpu', 'cuda', 'cuda'), ('cuda', 'cpu', 'cpu'),
('cuda', 'cpu', 'cuda'), ('cpu', 'cuda', 'cpu')]:
condition = torch.rand(16, device=devices[0])
x = torch.rand(16, device=devices[1])
y = torch.rand(16, device=devices[2])
with self.assertRaisesRegex(RuntimeError,
"Expected condition, x and y to be on the same device"):
torch.where(condition, x, y)
def test_where_bool_tensor(self):
for d in torch.testing.get_all_device_types():
a = torch.tensor([True, False], device=d)
res = torch.where(a > 0)
self.assertEqual(1, len(res))
def test_where_tensor(self):
def rand_tensor(size, dtype, device):
if dtype.is_floating_point or dtype.is_complex:
return torch.rand(size=size, dtype=dtype, device=device)
elif dtype == torch.uint8:
return torch.randint(1, 5, size=size, dtype=dtype, device=device)
elif dtype == torch.bool:
return torch.randint(0, 1, size=size, dtype=dtype, device=device).bool()
else:
return torch.randint(-5, 5, size=size, dtype=dtype, device=device)
def get_tensor(size, dtype, device, contiguous):
if not contiguous and len(size) < 2:
raise RuntimeError("Unable to generate non contiguous tensor with size < 2")
t = rand_tensor(size, dtype, device)
if contiguous:
return t
else:
return t.transpose(0, 1)
height = 5
width = 5
for device in torch.testing.get_all_device_types():
for dt1 in torch.testing.get_all_dtypes():
for dt2 in torch.testing.get_all_dtypes():
for contiguous in [True, False]:
x1 = get_tensor((height, width), dt1, device, contiguous)
x2 = get_tensor((height, width), dt2, device, contiguous)
if dt1 != dt2:
self.assertRaisesRegex(RuntimeError, "expected scalar type", lambda: torch.where(x1 == 1, x1, x2))
else:
if x1.is_floating_point():
condition = (x1 < 0.5)
elif x1.is_complex():
condition = (x1.abs() < 0.5)
else:
condition = (x1 == 1)
expected = condition.to(x1.dtype) * x1 + (~condition).to(x2.dtype) * x2
result = torch.where(condition, x1, x2)
self.assertEqual(expected, result)
def test_dtypes(self):
all_dtypes = torch.testing.get_all_dtypes()
do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cpu'))
if torch.cuda.is_available():
all_dtypes.remove(torch.bfloat16) # Remove once _th_zero_ is enabled on cuda for bfloat16
do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cuda:0'))
def test_copy_dtypes(self):
all_dtypes = torch.testing.get_all_dtypes()
for dtype in all_dtypes:
copied_dtype = copy.deepcopy(dtype)
self.assertIs(dtype, copied_dtype)
def test_copy_transpose(self):
x = torch.arange(100 * 100, dtype=torch.float).reshape(100, 100).t()
y = torch.empty(100, 100, dtype=torch.float)
y.copy_(x)
self.assertEqual(y[:, 0], range(100))
self.assertEqual(y[:, 40], range(4000, 4100))
y = torch.empty(100, 100, dtype=torch.double)
y.copy_(x)
self.assertEqual(y[:, 0], range(100))
self.assertEqual(y[:, 40], range(4000, 4100))
# Validates regression reported in https://github.com/pytorch/pytorch/issues/45269
x = torch.arange(100 * 100).reshape(100, 100).to(dtype=torch.cfloat).t()
y = torch.empty(100, 100, dtype=torch.cfloat)
y.copy_(x)
self.assertEqual(y[:, 0], range(100))
self.assertEqual(y[:, 40], range(4000, 4100))
def test_device(self):
cpu = torch.device('cpu')
self.assertEqual('cpu', str(cpu))
self.assertEqual('cpu', cpu.type)
self.assertEqual(None, cpu.index)
cpu0 = torch.device('cpu:0')
self.assertEqual('cpu:0', str(cpu0))
self.assertEqual('cpu', cpu0.type)
self.assertEqual(0, cpu0.index)
cpu0 = torch.device('cpu', 0)
self.assertEqual('cpu:0', str(cpu0))
self.assertEqual('cpu', cpu0.type)
self.assertEqual(0, cpu0.index)
cuda = torch.device('cuda')
self.assertEqual('cuda', str(cuda))
self.assertEqual('cuda', cuda.type)
self.assertEqual(None, cuda.index)
cuda1 = torch.device('cuda:1')
self.assertEqual('cuda:1', str(cuda1))
self.assertEqual('cuda', cuda1.type)
self.assertEqual(1, cuda1.index)
cuda1 = torch.device('cuda', 1)
self.assertEqual('cuda:1', str(cuda1))
self.assertEqual('cuda', cuda1.type)
self.assertEqual(1, cuda1.index)
cuda90 = torch.device('cuda', 90)
self.assertEqual('cuda:90', str(cuda90))
self.assertEqual('cuda', cuda90.type)
self.assertEqual(90, cuda90.index)
self.assertRaises(RuntimeError, lambda: torch.device('cpu:-1'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:-1'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2 '))
self.assertRaises(RuntimeError, lambda: torch.device('cuda: 2'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2 2'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2.'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2?'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:?2'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2.232'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2 cuda:3'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2+cuda:3'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2cuda:3'))
self.assertRaises(RuntimeError, lambda: torch.device(-1))
self.assertRaises(RuntimeError, lambda: torch.device('other'))
self.assertRaises(RuntimeError, lambda: torch.device('other:0'))
device_set = {'cpu', 'cpu:0', 'cuda', 'cuda:0', 'cuda:1', 'cuda:10', 'cuda:100'}
device_hash_set = set()
for device in list(device_set):
device_hash_set.add(hash(torch.device(device)))
self.assertEqual(len(device_set), len(device_hash_set))
def get_expected_device_repr(device):
if device.index is not None:
return "device(type='{type}', index={index})".format(
type=device.type, index=device.index)
return "device(type='{type}')".format(type=device.type)
for device in device_set:
dev = torch.device(device)
self.assertEqual(repr(dev), get_expected_device_repr(dev))
def test_to(self):
def test_copy_behavior(t, non_blocking=False):
self.assertIs(t, t.to(t, non_blocking=non_blocking))
self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking))
self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking))
self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True))
devices = [t.device]
if t.device.type == 'cuda':
if t.device.index == -1:
devices.append('cuda:{}'.format(torch.cuda.current_device()))
elif t.device.index == torch.cuda.current_device():
devices.append('cuda')
for device in devices:
self.assertIs(t, t.to(device, non_blocking=non_blocking))
self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking))
self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True))
a = torch.tensor(5)
test_copy_behavior(a)
self.assertEqual(a.device, a.to('cpu').device)
self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device)
self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype)
self.assertEqual(a.device, a.to(torch.float32).device)
self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype)
self.assertEqual(a.data_ptr(), a.to('cpu').data_ptr())
self.assertEqual(a.data_ptr(), a.to(dtype=a.dtype, device=a.device, copy=False).data_ptr())
self.assertEqual(a.data_ptr(), a.to('cpu', copy=False).data_ptr())
self.assertNotEqual(a.data_ptr(), a.to('cpu', copy=True).data_ptr())
if torch.cuda.is_available():
for non_blocking in [True, False]:
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
b = torch.tensor(5., device=cuda)
test_copy_behavior(b, non_blocking)
self.assertEqual(b.device, b.to(cuda, non_blocking=non_blocking).device)
self.assertEqual(a.device, b.to('cpu', non_blocking=non_blocking).device)
self.assertEqual(b.device, a.to(cuda, non_blocking=non_blocking).device)
self.assertIs(torch.int32, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype)
self.assertEqual(a.device, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device)
self.assertIs(torch.int32, b.to(dtype=torch.int32).dtype)
self.assertEqual(b.device, b.to(dtype=torch.int32).device)
def test_to_with_tensor(self):
a = torch.tensor(5)
self.assertEqual(a.device, a.to(a).device)
if torch.cuda.is_available():
for non_blocking in [True, False]:
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
b = torch.tensor(5., device=cuda)
self.assertEqual(b.device, b.to(b, non_blocking=non_blocking).device)
self.assertEqual(a.device, b.to(a, non_blocking=non_blocking).device)
self.assertEqual(b.device, a.to(b, non_blocking=non_blocking).device)
def test_as_subclass(self):
class SubTensor(torch.Tensor):
member_var = object()
t0 = torch.tensor(0)
t1 = torch.tensor([1, 2])
t2 = torch.tensor([[3, 4], [5, 6]])
s0 = t0.as_subclass(SubTensor)
s1 = t1.as_subclass(SubTensor)
s2 = t2.as_subclass(SubTensor)
# Check that the correct type is returned.
self.assertTrue(type(s0) is SubTensor)
self.assertTrue(type(s1) is SubTensor)
self.assertTrue(type(s2) is SubTensor)
# Check that the data is equal.
self.assertEqual(t0, s0)
self.assertEqual(t1, s1)
self.assertEqual(t2, s2)
t0[()] = 1
t1[1] = 3
t2[1, 1] = 7
# Check that the data is equal even after modification.
self.assertEqual(t0, s0)
self.assertEqual(t1, s1)
self.assertEqual(t2, s2)
# Check that member variables are passed through.
self.assertTrue(s0.member_var is SubTensor.member_var)
self.assertTrue(s1.member_var is SubTensor.member_var)
self.assertTrue(s2.member_var is SubTensor.member_var)
# Test that autograd is propagated.
t = torch.tensor(5, dtype=torch.float32, requires_grad=True)
# Run a calculation on the tensor.
exp_t = torch.exp(t)
# Cast exp_t to a subclass.
exp_s = exp_t.as_subclass(SubTensor)
# Make sure that t.grad was initially None
self.assertTrue(t.grad is None)
# Run the autograd calculation.
exp_s.backward()
# Make sure autograd was propagated to the original tensor
# declared with requires_grad.
self.assertTrue(t.grad is not None)
def test_type(self):
x = torch.randn(3, 3).double()
self.assertEqual(x.type('torch.FloatTensor').dtype, torch.float32)
self.assertEqual(x.type(torch.FloatTensor).dtype, torch.float32)
self.assertEqual(x.int().type(torch.Tensor).dtype, torch.get_default_dtype())
self.assertEqual(x.type(torch.int32).dtype, torch.int32)
def test_qengine(self):
qengines = torch.backends.quantized.supported_engines
original_qe = torch.backends.quantized.engine
for qe in qengines:
torch.backends.quantized.engine = qe
assert torch.backends.quantized.engine == qe, 'qengine not set successfully'
torch.backends.quantized.engine = original_qe
def _spawn_method(self, method, arg):
try:
mp.set_start_method('spawn')
except RuntimeError:
pass
with mp.Pool(1) as pool:
out: list = pool.map(method, [arg])
self.assertTrue(out[0])
@staticmethod
def _test_multinomial_invalid_probs(probs):
try:
# n_sample = 1 is a special case, test n_sample=2 which is more general
torch.multinomial(probs.to('cpu'), 2)
return False # Should not be reached
except RuntimeError as e:
return 'probability tensor contains either `inf`, `nan` or element < 0' in str(e)
@slowTest
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(IS_WINDOWS, 'FIXME: CUDA OOM error on Windows')
def test_multinomial_invalid_probs(self):
test_method = AbstractTestCases._TestTorchMixin._test_multinomial_invalid_probs
self._spawn_method(test_method, torch.Tensor([1, -1, 1]))
self._spawn_method(test_method, torch.Tensor([1, inf, 1]))
self._spawn_method(test_method, torch.Tensor([1, -inf, 1]))
self._spawn_method(test_method, torch.Tensor([1, 1, nan]))
def test_copy_broadcast(self):
torch.zeros(5, 6).copy_(torch.zeros(6))
self.assertRaises(RuntimeError, lambda: torch.zeros(5, 6).copy_(torch.zeros(30)))
def test_copy_many_to_one(self):
# Testing in-place copy where it attempt to write from many memory
# storage to a single storage would cause RuntimeError to be thrown
self.assertRaises(RuntimeError, lambda: torch.zeros(1, 6).expand(5, 6).copy_(torch.zeros(5, 6)))
def test_slice(self):
empty = torch.empty(0, 4)
x = torch.arange(0., 16).view(4, 4)
self.assertEqual(x[:], x)
self.assertEqual(x[:4], x)
# start and stop are clamped to the size of dim
self.assertEqual(x[:5], x)
# if start >= stop then the result is empty
self.assertEqual(x[2:1], empty)
self.assertEqual(x[2:2], empty)
# out of bounds is also empty
self.assertEqual(x[10:12], empty)
# additional correctness checks
self.assertEqual(x[:1].tolist(), [[0, 1, 2, 3]])
self.assertEqual(x[:-3].tolist(), [[0, 1, 2, 3]])
self.assertEqual(x[:, -2:3].tolist(), [[2], [6], [10], [14]])
self.assertEqual(x[0:-1:2].tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]])
@unittest.skip("Not implemented yet")
def test_conv2(self):
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
imvc = torch.conv2(x, k)
imvc2 = torch.conv2(x, k, 'V')
imfc = torch.conv2(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
imvx = torch.xcorr2(x, ki)
imvx2 = torch.xcorr2(x, ki, 'V')
imfx = torch.xcorr2(x, ki, 'F')
self.assertEqual(imvc, imvc2, atol=0, rtol=0, msg='torch.conv2')
self.assertEqual(imvc, imvx, atol=0, rtol=0, msg='torch.conv2')
self.assertEqual(imvc, imvx2, atol=0, rtol=0, msg='torch.conv2')
self.assertEqual(imfc, imfx, atol=0, rtol=0, msg='torch.conv2')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
xx = torch.Tensor(2, x.size(1), x.size(2))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv2(xx, kk)
immvc2 = torch.conv2(xx, kk, 'V')
immfc = torch.conv2(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], atol=0, rtol=0, msg='torch.conv2')
self.assertEqual(immvc[0], imvc, atol=0, rtol=0, msg='torch.conv2')
self.assertEqual(immvc2[0], imvc2, atol=0, rtol=0, msg='torch.conv2')
self.assertEqual(immfc[0], immfc[1], atol=0, rtol=0, msg='torch.conv2')
self.assertEqual(immfc[0], imfc, atol=0, rtol=0, msg='torch.conv2')
@unittest.skip("Not implemented yet")
def test_conv3(self):
x = torch.rand(math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)))
k = torch.rand(math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)))
imvc = torch.conv3(x, k)
imvc2 = torch.conv3(x, k, 'V')
imfc = torch.conv3(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
imvx = torch.xcorr3(x, ki)
imvx2 = torch.xcorr3(x, ki, 'V')
imfx = torch.xcorr3(x, ki, 'F')
self.assertEqual(imvc, imvc2, atol=0, rtol=0, msg='torch.conv3')
self.assertEqual(imvc, imvx, atol=0, rtol=0, msg='torch.conv3')
self.assertEqual(imvc, imvx2, atol=0, rtol=0, msg='torch.conv3')
self.assertEqual(imfc, imfx, atol=0, rtol=0, msg='torch.conv3')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv3(xx, kk)
immvc2 = torch.conv3(xx, kk, 'V')
immfc = torch.conv3(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], atol=0, rtol=0, msg='torch.conv3')
self.assertEqual(immvc[0], imvc, atol=0, rtol=0, msg='torch.conv3')
self.assertEqual(immvc2[0], imvc2, atol=0, rtol=0, msg='torch.conv3')
self.assertEqual(immfc[0], immfc[1], atol=0, rtol=0, msg='torch.conv3')
self.assertEqual(immfc[0], imfc, atol=0, rtol=0, msg='torch.conv3')
@unittest.skip("Not implemented yet")
def _test_conv_corr_eq(self, fn, fn_2_to_3):
ix = math.floor(random.randint(20, 40))
iy = math.floor(random.randint(20, 40))
iz = math.floor(random.randint(20, 40))
kx = math.floor(random.randint(5, 10))
ky = math.floor(random.randint(5, 10))
kz = math.floor(random.randint(5, 10))
x = torch.rand(ix, iy, iz)
k = torch.rand(kx, ky, kz)
o3 = fn(x, k)
o32 = torch.zeros(o3.size())
fn_2_to_3(x, k, o3, o32)
self.assertEqual(o3, o32)
@unittest.skip("Not implemented yet")
def test_xcorr3_xcorr2_eq(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.xcorr2(x[i + j - 1], k[j]))
self._test_conv_corr_eq(torch.xcorr3, reference)
@unittest.skip("Not implemented yet")
def test_xcorr3_xcorr2_eq_full(self):
def reference(x, k, o3, o32):
for i in range(x.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F'))
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference)
@unittest.skip("Not implemented yet")
def test_conv3_conv2_eq_valid(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1]))
self._test_conv_corr_eq(torch.conv3, reference)
@unittest.skip("Not implemented yet")
def test_fconv3_fconv2_eq(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F'))
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference)
def test_dtype_is_signed(self):
for dtype in torch.testing.get_all_dtypes():
self.assertEqual(dtype.is_signed, torch.is_signed(torch.tensor(0, dtype=dtype)))
self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.quint8.is_signed)
self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.qint8.is_signed)
self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.qint32.is_signed)
def test_RNGState(self):
state = torch.get_rng_state()
stateCloned = state.clone()
before = torch.rand(1000)
self.assertEqual(state.ne(stateCloned).long().sum(), 0, atol=0, rtol=0)
torch.set_rng_state(state)
after = torch.rand(1000)
self.assertEqual(before, after, atol=0, rtol=0)
def test_RNGStateAliasing(self):
# Fork the random number stream at this point
gen = torch.Generator()
gen.set_state(torch.get_rng_state())
self.assertEqual(gen.get_state(), torch.get_rng_state())
target_value = torch.rand(1000)
# Dramatically alter the internal state of the main generator
_ = torch.rand(100000)
forked_value = torch.rand(1000, generator=gen)
self.assertEqual(target_value, forked_value, atol=0, rtol=0, msg="RNG has not forked correctly.")
def test_RNG_after_pickle(self):
torch.random.manual_seed(100)
before = torch.rand(10)
torch.random.manual_seed(100)
buf = io.BytesIO()
tensor = torch.Tensor([1, 2, 3])
ForkingPickler(buf, pickle.HIGHEST_PROTOCOL).dump(tensor)
after = torch.rand(10)
self.assertEqual(before, after, atol=0, rtol=0)
def test_boxMullerState(self):
torch.manual_seed(123)
odd_number = 101
seeded = torch.randn(odd_number)
state = torch.get_rng_state()
midstream = torch.randn(odd_number)
torch.set_rng_state(state)
repeat_midstream = torch.randn(odd_number)
torch.manual_seed(123)
reseeded = torch.randn(odd_number)
self.assertEqual(midstream, repeat_midstream, atol=0, rtol=0,
msg='get_rng_state/set_rng_state not generating same sequence of normally distributed numbers')
self.assertEqual(seeded, reseeded, atol=0, rtol=0,
msg='repeated calls to manual_seed not generating same sequence of normally distributed numbers')
def test_manual_seed(self):
rng_state = torch.get_rng_state()
torch.manual_seed(2)
x = torch.randn(100)
self.assertEqual(torch.initial_seed(), 2)
torch.manual_seed(2)
y = torch.randn(100)
self.assertEqual(x, y)
max_int64 = 0x7fff_ffff_ffff_ffff
min_int64 = -max_int64 - 1
max_uint64 = 0xffff_ffff_ffff_ffff
# Check all boundary cases of valid seed value inputs
test_cases = [
# (seed, expected_initial_seed)
# Positive seeds should be unchanged
(max_int64, max_int64),
(max_int64 + 1, max_int64 + 1),
(max_uint64, max_uint64),
(0, 0),
# Negative seeds wrap around starting from the largest seed value
(-1, max_uint64),
(min_int64, max_int64 + 1)
]
for seed, expected_initial_seed in test_cases:
torch.manual_seed(seed)
actual_initial_seed = torch.initial_seed()
msg = "expected initial_seed() = %x after calling manual_seed(%x), but got %x instead" % (
expected_initial_seed, seed, actual_initial_seed)
self.assertEqual(expected_initial_seed, actual_initial_seed, msg=msg)
for invalid_seed in [min_int64 - 1, max_uint64 + 1]:
with self.assertRaisesRegex(RuntimeError, r'Overflow when unpacking long'):
torch.manual_seed(invalid_seed)
torch.set_rng_state(rng_state)
def test_numel(self):
b = torch.ByteTensor(3, 100, 100)
self.assertEqual(b.nelement(), 3 * 100 * 100)
self.assertEqual(b.numel(), 3 * 100 * 100)
def test_empty_storage_view(self):
# we should be able to "modify" slices of a 0-element
# array without an error being raised due to
# trying to resize its storage
t = torch.from_numpy(np.empty((0, 4)))
t[:, 1::2] *= 1
def test_newaxis_numpy_comparison(self):
def run_test(tensor, *idx):
npt = tensor.numpy()
self.assertEqual(tensor[idx], npt[idx])
# 1D Tensor Tests
x = torch.arange(0, 10)
cases = [
[None],
[None, None],
[Ellipsis, None],
[None, Ellipsis],
[2, None],
[None, 2],
[Ellipsis, None, 2],
[Ellipsis, 2, None],
[2, Ellipsis, None],
[2, None, Ellipsis],
[None, 2, Ellipsis],
[None, Ellipsis, 2],
]
for case in cases:
run_test(x, *case)
# 2D Tensor Tests
x = torch.arange(0, 12).view(3, 4)
cases = [
[None],
[None, None],
[None, None, None],
[Ellipsis, None],
[Ellipsis, None, None],
[None, Ellipsis],
[None, Ellipsis, None],
[None, None, Ellipsis],
[2, None],
[2, None, Ellipsis],
[2, Ellipsis, None],
[None, 2, Ellipsis],
[Ellipsis, 2, None],
[Ellipsis, None, 2],
[None, Ellipsis, 2],
[1, 2, None],
[1, 2, Ellipsis, None],
[1, Ellipsis, 2, None],
[Ellipsis, 1, None, 2],
[Ellipsis, 1, 2, None],
[1, None, 2, Ellipsis],
[None, 1, Ellipsis, 2],
[None, 1, 2, Ellipsis],
]
for case in cases:
run_test(x, *case)
def _consecutive(self, size, start=1):
sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0)
sequence.add_(start - 1)
return sequence.resize_(*size)
def test_newindex(self):
reference = self._consecutive((3, 3, 3))
# This relies on __index__() being correct - but we have separate tests for that
def checkPartialAssign(index):
reference = torch.zeros(3, 3, 3)
reference[index] = self._consecutive((3, 3, 3))[index]
self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], atol=0, rtol=0)
reference[index] = 0
self.assertEqual(reference, torch.zeros(3, 3, 3), atol=0, rtol=0)
checkPartialAssign(0)
checkPartialAssign(1)
checkPartialAssign(2)
checkPartialAssign((0, 1))
checkPartialAssign((1, 2))
checkPartialAssign((0, 2))
checkPartialAssign(torch.LongTensor((0, 2)))
with self.assertRaises(IndexError):
reference[1, 1, 1, 1] = 1
with self.assertRaises(IndexError):
reference[1, 1, 1, (1, 1)] = 1
with self.assertRaises(IndexError):
reference[3, 3, 3, 3, 3, 3, 3, 3] = 1
with self.assertRaises(IndexError):
reference[0.0] = 1
with self.assertRaises(TypeError):
reference[0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, 0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, :, 0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, ..., 0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, :, 0.0] = 1
def test_index_add(self):
for device in torch.testing.get_all_device_types():
for dest_contig, src_contig, index_contig in product([True, False], repeat=3):
for other_sizes in ((), (4, 5)):
for dtype in [torch.int, torch.long]:
num_copy, num_dest = 3, 3
dest = torch.randn(num_dest, *other_sizes, device=device)
if not dest_contig:
dest = torch.testing.make_non_contiguous(dest)
src = torch.randn(num_copy, *other_sizes, device=device)
if not src_contig:
src = torch.testing.make_non_contiguous(src)
idx = torch.randperm(num_dest, dtype=dtype, device=device).narrow(0, 0, num_copy)
if not index_contig:
idx = torch.testing.make_non_contiguous(idx)
dest2 = dest.clone()
dest.index_add_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] += src[i]
self.assertEqual(dest, dest2)
# add coverage for issue with atomic add that appeared only for
# specific dtypes on cuda:
# https://github.com/pytorch/pytorch/issues/29153
def test_index_add_all_dtypes(self):
for device in torch.testing.get_all_device_types():
for dtype in torch.testing.get_all_math_dtypes(device):
for idx_dtype in [torch.int, torch.long]:
size = [5, 5]
if dtype.is_floating_point or dtype.is_complex:
tensor = torch.rand(size, dtype=dtype, device=device)
elif dtype.is_signed:
tensor = torch.randint(-5, 15, size, dtype=dtype, device=device)
else:
tensor = torch.randint(0, 10, size, dtype=dtype, device=device)
# index_add calls atomicAdd on cuda.
zeros = torch.zeros(size, dtype=dtype, device=device)
# index_add is not supported for complex dtypes on cuda yet
if device.startswith('cuda') and dtype.is_complex:
continue
added = zeros.index_add(0, torch.arange(0, size[0], dtype=idx_dtype, device=device), tensor)
self.assertEqual(added, tensor)
def test_take(self):
def check(src, idx):
expected = src.contiguous().view(-1).index_select(
0, idx.contiguous().view(-1)).view_as(idx)
actual = src.take(idx)
self.assertEqual(actual.size(), idx.size())
self.assertEqual(expected, actual)
src = torch.randn(2, 3, 5)
idx = torch.LongTensor([[0, 2], [3, 4]])
check(src, idx)
check(src.transpose(1, 2), idx)
check(src.bool(), idx)
def test_put_(self):
def check(dst, idx, value):
expected = dst.clone(memory_format=torch.contiguous_format).view(-1).index_copy_(
0, idx.contiguous().view(-1), value.contiguous().view(-1))
expected = expected.view_as(dst)
dst.put_(idx, value)
self.assertEqual(expected, dst)
dst = torch.randn(2, 3, 5)
idx = torch.LongTensor([[0, 2], [3, 4]])
values = torch.randn(2, 2)
check(dst, idx, values)
check(dst.transpose(1, 2), idx, values)
values = torch.tensor([[False, False], [False, False]])
check(dst.bool(), idx, values)
def test_put_accumulate(self):
dst = torch.ones(2, 2)
idx = torch.LongTensor([[0, 1], [0, 1]])
src = torch.Tensor([1, 2, 3, 4])
dst.put_(idx, src, accumulate=True)
self.assertEqual(dst.tolist(), [[5, 7], [1, 1]])
# Fill idx with valid indices.
@staticmethod
def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o):
for i in range(1 if dim == 0 else m):
for j in range(1 if dim == 1 else n):
for k in range(1 if dim == 2 else o):
ii = [i, j, k]
ii[dim] = slice(0, idx.size(dim) + 1)
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
def test_unflatten(self):
# test args: tensor, int, sizes
self.assertEqual(torch.tensor([]).unflatten(0, (0, 1)), torch.empty(0, 1))
self.assertEqual(torch.tensor([1]).unflatten(0, (1, 1)), torch.tensor([[1]]))
self.assertEqual(torch.tensor([1, 2, 3, 4]).unflatten(0, (2, 2)), torch.tensor([[1, 2], [3, 4]]))
self.assertEqual(torch.tensor([1, 2, 3, 4]).unflatten(0, [2, 2]), torch.tensor([[1, 2], [3, 4]]))
self.assertEqual(torch.tensor([1, 2, 3, 4]).unflatten(0, torch.Size([2, 2])), torch.tensor([[1, 2], [3, 4]]))
self.assertEqual(torch.ones(2, 10).unflatten(1, (5, 2)), torch.ones(2, 5, 2))
# test invalid args: tensor, str, sizes
with self.assertRaisesRegex(TypeError, r"received an invalid combination of arguments"):
torch.tensor([1]).unflatten('A', (1, 1))
# test invalid args: tensor, str, namedshape
with self.assertRaisesRegex(RuntimeError, r"Name 'A' not found in Tensor\[None\]."):
torch.ones(4).unflatten('A', (('A', 2), ('B', 2)))
# test other invalid arguments
with self.assertRaisesRegex(RuntimeError, r"sizes must be non-empty"):
torch.tensor([1]).unflatten(0, [])
with self.assertRaisesRegex(RuntimeError, r"Provided sizes \[2, 2\] don't multiply up to the size of dim 0 \(1\)"):
torch.tensor([1]).unflatten(0, [2, 2])
with self.assertRaisesRegex(IndexError, r"dimension specified as 0 but tensor has no dimensions"):
torch.tensor(1).unflatten(0, [0])
@staticmethod
def _test_gather(self, cast, test_bounds=True):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
for dtype in {torch.float32, torch.complex64, torch.complex128}:
src = torch.randn(m, n, o, dtype=dtype)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = torch.LongTensor().resize_(*idx_size)
AbstractTestCases._TestTorchMixin._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o)
src = cast(src)
idx = cast(idx)
actual = torch.gather(src, dim, idx)
expected = cast(torch.zeros(idx_size, dtype=dtype))
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
expected[i, j, k] = src[tuple(ii)]
self.assertEqual(actual, expected, atol=0, rtol=0)
bad_src = torch.randn(*[i - 1 for i in idx_size])
self.assertRaises(RuntimeError, lambda: torch.gather(bad_src, dim, idx))
# should throw an error when index dtype is not long
with self.assertRaisesRegex(RuntimeError, 'Expected dtype int64 for index'):
torch.gather(src, dim, idx.to(torch.int))
# should throw an error when out.dtype != src.dtype.
with self.assertRaisesRegex(RuntimeError, 'Expected self.dtype to be equal to src.dtype'):
torch.gather(src, dim, idx, out=expected.to(torch.int))
# checks for the same dimensionality
with self.assertRaisesRegex(RuntimeError, 'Index tensor must have the same number of dimensions as input tensor'):
torch.gather(src, dim, idx.unsqueeze(-1))
with self.assertRaisesRegex(RuntimeError, 'Index tensor must have the same number of dimensions as input tensor'):
torch.gather(src.unsqueeze(-1), dim, idx)
if test_bounds:
idx[0][0][0] = 23
self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx))
src = cast(torch.randn(3, 4, 5))
expected, idx = src.max(2, True)
expected = cast(expected)
idx = cast(idx)
actual = torch.gather(src, 2, idx)
self.assertEqual(actual, expected, atol=0, rtol=0)
# Bool test case
t = torch.tensor([[False, True], [True, True]])
self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])), torch.tensor([[False, False], [True, True]]))
def test_gather(self):
self._test_gather(self, lambda t: t)
@staticmethod
def _test_scatter_add_mult_index_base(self, cast):
m, n = 30, 40
idx = torch.zeros(m, n).long()
src = torch.ones(m, n)
res0 = torch.zeros(m, n).scatter_add_(0, idx, src)
res1 = torch.zeros(m, n).scatter_add_(1, idx, src)
self.assertEqual(res0[0, :], m * torch.ones(n), atol=0, rtol=0)
self.assertEqual(res1[:, 0], n * torch.ones(m), atol=0, rtol=0)
def test_scatter_add_mult_index(self):
self._test_scatter_add_mult_index_base(self, lambda t: t)
@staticmethod
def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True, reduction=None, *, test_complex=False):
if test_complex:
dtypes = [torch.complex64, torch.complex128]
else:
dtypes = [torch.float16, torch.float32, torch.float64]
for dtype in dtypes:
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = cast(torch.LongTensor().resize_(*idx_size))
AbstractTestCases._TestTorchMixin._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o)
src_size = [random.randint(1, 5) + s for s in idx_size]
if is_scalar:
src = random.random()
else:
src = cast(torch.randn(src_size, dtype=dtype))
base = cast(torch.randn(m, n, o, dtype=dtype))
if reduction:
actual = getattr(base.clone(), method)(dim, idx, src, reduce=reduction)
else:
actual = getattr(base.clone(), method)(dim, idx, src)
expected = base.clone()
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
if method == 'scatter_' and not is_scalar:
if reduction:
if reduction == "add":
expected[tuple(ii)] += src[i, j, k]
elif reduction == "multiply":
expected[tuple(ii)] *= src[i, j, k]
else:
expected[tuple(ii)] = src[i, j, k]
elif method == 'scatter_add_':
expected[tuple(ii)] += src[i, j, k]
else:
expected[tuple(ii)] = src
self.assertEqual(actual, expected, atol=0, rtol=0)
# should throw an error when self.dtype != src.dtype.
# we ignore the case when src is Scalar, as it gets
# cast via src.to<scalar_t>.
if not is_scalar:
with self.assertRaisesRegex(RuntimeError, 'Expected self.dtype to be equal to src.dtype'):
getattr(base.clone().type(torch.int), method)(dim, idx, src)
with self.assertRaisesRegex(RuntimeError, 'Expected self.dtype to be equal to src.dtype'):
getattr(base.clone(), method)(dim, idx, src.type(torch.int))
# should throw an error when index dtype is not long
with self.assertRaisesRegex(IndexError, 'Expected dtype int64 for index'):
getattr(base.clone(), method)(dim, idx.type(torch.int), src)
# check for the same dimensionality
with self.assertRaisesRegex(RuntimeError, 'Index tensor must have the same number of dimensions as self tensor'):
getattr(base.clone().unsqueeze(-1), method)(dim, idx, src)
with self.assertRaisesRegex(RuntimeError, 'Index tensor must have the same number of dimensions as self tensor'):
getattr(base.clone(), method)(dim, idx.unsqueeze(-1), src)
if not is_scalar:
with self.assertRaisesRegex(RuntimeError, 'Index tensor must have the same number of dimensions as src tensor'):
getattr(base.clone(), method)(dim, idx, src.unsqueeze(-1))
if test_bounds:
idx[0][0][0] = 34
with self.assertRaises(RuntimeError):
if reduction:
getattr(base.clone(), method)(dim, idx, src, reduce=reduction)
else:
getattr(base.clone(), method)(dim, idx, src)
# test for empty index, should be a no-op
idx = cast(torch.LongTensor())
if reduction:
actual = getattr(base.clone(), method)(dim, idx, src, reduce=reduction)
else:
actual = getattr(base.clone(), method)(dim, idx, src)
self.assertEqual(actual, base, atol=0, rtol=0)
def test_scatter(self):
self._test_scatter_base(self, lambda t: t, 'scatter_')
def test_scatterAdd(self):
self._test_scatter_base(self, lambda t: t, 'scatter_add_')
def test_scatterFill(self):
self._test_scatter_base(self, lambda t: t, 'scatter_', True)
def test_scatterReduce(self):
for method in ["add", "multiply"]:
self._test_scatter_base(self, lambda t: t, 'scatter_', reduction=method)
def test_masked_scatter(self):
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
for maskType in [torch.uint8, torch.bool]:
for dt in torch.testing.get_all_dtypes():
num_copy, num_dest = 3, 10
dest = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dt)
dest2 = dest.clone()
src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt)
mask = torch.tensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0), dtype=maskType)
if dt == torch.bool:
# torch.bool is a special case and is being tested
# in a separate test
continue
# TODO: update test when masked scatter is supported for complex
if dt == torch.half or dt.is_complex:
self.assertRaises(RuntimeError, lambda: dest.masked_scatter_(mask, src))
continue
dest.masked_scatter_(mask, src)
j = 0
for i in range(num_dest):
if mask[i]:
dest2[i] = src[j]
j += 1
self.assertEqual(dest, dest2, atol=0, rtol=0)
# make source bigger than number of 1s in mask
src = torch.tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=dt)
dest.masked_scatter_(mask, src)
# make src smaller. this should fail
src = torch.randn(num_copy - 1)
with self.assertRaises(RuntimeError):
dest.masked_scatter_(mask, src)
self.assertEqual(len(w), 27)
warn = 'masked_scatter_ received a mask with dtype torch.uint8,'
for wi in w:
self.assertEqual(str(wi.message)[0:55], str(warn))
def test_masked_fill(self):
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
for dt in torch.testing.get_all_dtypes():
for dtype in [torch.uint8, torch.bool]:
num_dest = 10
dst = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt)
mask = torch.rand(num_dest).mul(2).floor().to(dtype)
val = random.random()
dst2 = dst.clone()
dst.masked_fill_(mask, val)
for i in range(num_dest):
if mask[i]:
dst2[i] = val
self.assertEqual(dst, dst2, atol=0, rtol=0)
# test non-contiguous case
dst = torch.randn(num_dest, num_dest, num_dest).permute((2, 0, 1))
dst2 = dst.clone()
dst.masked_fill_((dst > 0).to(dtype), val)
dst2.masked_fill_((dst2 > 0).to(dtype), val)
self.assertEqual(dst, dst2, atol=0, rtol=0)
self.assertEqual(len(w), 36)
warn = 'masked_fill_ received a mask with dtype torch.uint8,'
for wi in w:
self.assertEqual(str(wi.message)[0:52], str(warn))
def test_structseq_repr(self):
a = torch.arange(250).reshape(5, 5, 10)
expected = """
torch.return_types.max(
values=tensor([[ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
[140, 141, 142, 143, 144, 145, 146, 147, 148, 149],
[190, 191, 192, 193, 194, 195, 196, 197, 198, 199],
[240, 241, 242, 243, 244, 245, 246, 247, 248, 249]]),
indices=tensor([[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]]))"""
self.assertEqual(repr(a.max(1)), textwrap.dedent(expected).strip())
def test_is_same_size(self):
t1 = torch.Tensor(3, 4, 9, 10)
t2 = torch.Tensor(3, 4)
t3 = torch.Tensor(1, 9, 3, 3)
t4 = torch.Tensor(3, 4, 9, 10)
self.assertFalse(t1.is_same_size(t2))
self.assertFalse(t1.is_same_size(t3))
self.assertTrue(t1.is_same_size(t4))
def test_tensor_set(self):
t1 = torch.Tensor()
t2 = torch.Tensor(3, 4, 9, 10).uniform_()
t1.set_(t2)
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
size = torch.Size([9, 3, 4, 10])
t1.set_(t2.storage(), 0, size)
self.assertEqual(t1.size(), size)
t1.set_(t2.storage(), 0, tuple(size))
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), (120, 40, 10, 1))
stride = (10, 360, 90, 1)
t1.set_(t2.storage(), 0, size, stride)
self.assertEqual(t1.stride(), stride)
t1.set_(t2.storage(), 0, size=size, stride=stride)
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), stride)
# test argument names
t1 = torch.Tensor()
# 1. case when source is tensor
t1.set_(source=t2)
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
# 2. case when source is storage
t1.set_(source=t2.storage())
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
# 3. case when source is storage, and other args also specified
t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride)
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), stride)
t1 = torch.tensor([True, True], dtype=torch.bool)
t2 = torch.tensor([False, False], dtype=torch.bool)
t1.set_(t2)
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
def test_tensor_set_errors(self):
f_cpu = torch.randn((2, 3), dtype=torch.float32)
d_cpu = torch.randn((2, 3), dtype=torch.float64)
# change dtype
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu.storage()))
self.assertRaises(RuntimeError,
lambda: f_cpu.set_(d_cpu.storage(), 0, d_cpu.size(), d_cpu.stride()))
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu))
# change device
if torch.cuda.is_available():
f_cuda = torch.randn((2, 3), dtype=torch.float32, device='cuda')
# cpu -> cuda
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda.storage()))
self.assertRaises(RuntimeError,
lambda: f_cpu.set_(f_cuda.storage(), 0, f_cuda.size(), f_cuda.stride()))
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda))
# cuda -> cpu
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu.storage()))
self.assertRaises(RuntimeError,
lambda: f_cuda.set_(f_cpu.storage(), 0, f_cpu.size(), f_cpu.stride()))
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu))
def test_equal(self):
# Contiguous, 1D
t1 = torch.Tensor((3, 4, 9, 10))
t2 = t1.contiguous()
t3 = torch.Tensor((1, 9, 3, 10))
t4 = torch.Tensor((3, 4, 9))
t5 = torch.Tensor()
self.assertTrue(t1.equal(t2))
self.assertFalse(t1.equal(t3))
self.assertFalse(t1.equal(t4))
self.assertFalse(t1.equal(t5))
self.assertTrue(torch.equal(t1, t2))
self.assertFalse(torch.equal(t1, t3))
self.assertFalse(torch.equal(t1, t4))
self.assertFalse(torch.equal(t1, t5))
# Non contiguous, 2D
s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8)))
s1 = s[:, 1:3]
s2 = s1.clone()
s3 = torch.Tensor(((2, 3), (6, 7)))
s4 = torch.Tensor(((0, 0), (0, 0)))
self.assertFalse(s1.is_contiguous())
self.assertTrue(s1.equal(s2))
self.assertTrue(s1.equal(s3))
self.assertFalse(s1.equal(s4))
self.assertTrue(torch.equal(s1, s2))
self.assertTrue(torch.equal(s1, s3))
self.assertFalse(torch.equal(s1, s4))
def test_element_size(self):
byte = torch.ByteStorage().element_size()
char = torch.CharStorage().element_size()
short = torch.ShortStorage().element_size()
int = torch.IntStorage().element_size()
long = torch.LongStorage().element_size()
float = torch.FloatStorage().element_size()
double = torch.DoubleStorage().element_size()
bool = torch.BoolStorage().element_size()
bfloat16 = torch.BFloat16Storage().element_size()
complexfloat = torch.ComplexFloatStorage().element_size()
complexdouble = torch.ComplexDoubleStorage().element_size()
self.assertEqual(byte, torch.ByteTensor().element_size())
self.assertEqual(char, torch.CharTensor().element_size())
self.assertEqual(short, torch.ShortTensor().element_size())
self.assertEqual(int, torch.IntTensor().element_size())
self.assertEqual(long, torch.LongTensor().element_size())
self.assertEqual(float, torch.FloatTensor().element_size())
self.assertEqual(double, torch.DoubleTensor().element_size())
self.assertEqual(bool, torch.BoolTensor().element_size())
self.assertEqual(bfloat16, torch.tensor([], dtype=torch.bfloat16).element_size())
self.assertEqual(complexfloat, torch.tensor([], dtype=torch.complex64).element_size())
self.assertEqual(complexdouble, torch.tensor([], dtype=torch.complex128).element_size())
self.assertGreater(byte, 0)
self.assertGreater(char, 0)
self.assertGreater(short, 0)
self.assertGreater(int, 0)
self.assertGreater(long, 0)
self.assertGreater(float, 0)
self.assertGreater(double, 0)
self.assertGreater(bool, 0)
self.assertGreater(bfloat16, 0)
self.assertGreater(complexfloat, 0)
self.assertGreater(complexdouble, 0)
# These tests are portable, not necessarily strict for your system.
self.assertEqual(byte, 1)
self.assertEqual(char, 1)
self.assertEqual(bool, 1)
self.assertGreaterEqual(short, 2)
self.assertGreaterEqual(int, 2)
self.assertGreaterEqual(int, short)
self.assertGreaterEqual(long, 4)
self.assertGreaterEqual(long, int)
self.assertGreaterEqual(double, float)
def test_permute(self):
orig = [1, 2, 3, 4, 5, 6, 7]
perm = torch.randperm(7).tolist()
x = torch.Tensor(*orig).fill_(0)
new = [i - 1 for i in x.permute(*perm).size()]
self.assertEqual(perm, new)
self.assertEqual(x.size(), orig)
def test_reversed(self):
val = torch.arange(0, 10)
self.assertEqual(reversed(val), torch.arange(9, -1, -1))
val = torch.arange(1, 10).view(3, 3)
self.assertEqual(reversed(val), torch.tensor([[7, 8, 9], [4, 5, 6], [1, 2, 3]]))
val = torch.tensor(42)
self.assertEqual(reversed(val), torch.tensor(42))
def test_contains(self):
x = torch.arange(0, 10)
self.assertEqual(4 in x, True)
self.assertEqual(12 in x, False)
x = torch.arange(1, 10).view(3, 3)
val = torch.arange(1, 4)
self.assertEqual(val in x, True)
val += 10
self.assertEqual(val in x, False)
self.assertRaisesRegex(
RuntimeError,
"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type("foo")),
lambda: "foo" in x)
self.assertRaisesRegex(
RuntimeError,
"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type([1, 2])),
lambda: [1, 2] in x)
def test_deepcopy_parameter(self):
from copy import deepcopy
l = torch.nn.Linear(10, 1)
s = l.state_dict(keep_vars=True)
self.assertEqual(torch.nn.Parameter, type(s['weight']))
self.assertEqual(torch.nn.Parameter, type(s['bias']))
s2 = deepcopy(s)
self.assertEqual(torch.nn.Parameter, type(s2['weight']))
self.assertEqual(torch.nn.Parameter, type(s2['bias']))
def test_pickle(self):
import pickle
a = torch.randn(5, 5)
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertEqual(a, b)
def test_pickle_parameter(self):
import pickle
a = torch.nn.Parameter(torch.randn(5, 5))
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertTrue(isinstance(b, torch.nn.Parameter))
self.assertEqual(a.requires_grad, b.requires_grad)
self.assertEqual(a, b)
def test_pickle_parameter_no_requires_grad(self):
import pickle
a = torch.nn.Parameter(torch.randn(5, 5), requires_grad=False)
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertTrue(isinstance(b, torch.nn.Parameter))
self.assertEqual(a.requires_grad, b.requires_grad)
self.assertEqual(a, b)
def test_pickle_dtype(self):
t = torch.float32
serialized = pickle.dumps(t)
b = pickle.loads(serialized)
self.assertTrue(isinstance(b, torch.dtype))
self.assertEqual(id(b), id(t))
def test_pickle_size(self):
a = torch.rand(10).size()
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertTrue(isinstance(b, torch.Size))
self.assertEqual(a, b)
def test_pickle_function(self):
# https://github.com/pytorch/pytorch/issues/37703
a = torch.tanh
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertEqual(a, b)
def test_generator_cpu(self):
# test default generators are equal
self.assertEqual(torch.default_generator, torch.default_generator)
# tests Generator API
# manual_seed, seed, initial_seed, get_state, set_state
g1 = torch.Generator()
g2 = torch.Generator()
g1.manual_seed(12345)
g2.manual_seed(12345)
self.assertEqual(g1.initial_seed(), g2.initial_seed())
g1.seed()
g2.seed()
self.assertNotEqual(g1.initial_seed(), g2.initial_seed())
g1 = torch.Generator()
g2_state = g2.get_state()
g2_randn = torch.randn(1, generator=g2)
g1.set_state(g2_state)
g1_randn = torch.randn(1, generator=g1)
self.assertEqual(g1_randn, g2_randn)
default_state = torch.default_generator.get_state()
q = torch.Tensor(100)
g1_normal = q.normal_()
g2 = torch.Generator()
g2.set_state(default_state)
g2_normal = q.normal_(generator=g2)
self.assertEqual(g1_normal, g2_normal)
def test_invalid_generator_raises(self):
self.assertRaises(RuntimeError, lambda: torch.Generator('opengl'))
def test_sobolengine_unscrambled_lowdim(self):
engine_1d = torch.quasirandom.SobolEngine(1)
expected_1d = torch.tensor([0.5, 0.75, 0.25, 0.375, 0.875, 0.625, 0.125, 0.1875, 0.6875, 0.9375])
actual_1d = engine_1d.draw(10)
self.assertEqual(actual_1d.view(-1), expected_1d)
self.assertEqual(actual_1d.size(), torch.Size([10, 1]))
# Test out kwarg
engine_1d.reset()
actual_1d_out = torch.Tensor().float()
engine_1d.draw(10, out=actual_1d_out)
self.assertEqual(actual_1d.view(-1), expected_1d)
engine_3d = torch.quasirandom.SobolEngine(3)
expected_3d = torch.tensor([0.5, 0.75, 0.25, 0.625, 0.125, 0.375, 0.875, 0.3125, 0.8125, 0.5625])
actual_3d = engine_3d.draw(10)
self.assertEqual(actual_3d[:, 2], expected_3d)
self.assertEqual(actual_3d[:, 0], expected_1d)
self.assertEqual(actual_3d.size(), torch.Size([10, 3]))
engine_3d = torch.quasirandom.SobolEngine(3)
draws = torch.cat([engine_3d.draw() for _ in range(0, 10)])
self.assertEqual(draws, actual_3d)
engine_3d = torch.quasirandom.SobolEngine(3).fast_forward(5)
draws = engine_3d.draw(5)
self.assertEqual(draws, actual_3d[5:])
engine_3d.reset()
self.assertEqual(engine_3d.draw(3), actual_3d[:3])
engine_3d.fast_forward(2)
self.assertEqual(engine_3d.draw(5), actual_3d[5:])
def test_sobolengine_unscrambled_highdim(self):
from collections import Counter
engine = torch.quasirandom.SobolEngine(1111)
count1 = dict(Counter(engine.draw().view(-1).tolist()))
count2 = dict(Counter(engine.draw().view(-1).tolist()))
count3 = dict(Counter(engine.draw().view(-1).tolist()))
self.assertTrue(count1 == {0.5: 1111})
self.assertTrue(count2 == {0.25: 580, 0.75: 531})
self.assertTrue(count3 == {0.25: 531, 0.75: 580})
engine = torch.quasirandom.SobolEngine(1111)
draws = engine.draw(1000)
self.assertTrue(torch.all(draws <= 1))
self.assertTrue(torch.all(draws >= 0))
def test_sobolengine_scrambled_lowdim(self):
engine_1d = torch.quasirandom.SobolEngine(1, scramble=True, seed=1729)
expected_1d = [0.16478512, 0.43221009, 0.84261382, 0.99750268, 0.27460563,
0.01084163, 0.73373985, 0.65039611, 0.12329865, 0.35587373]
actual_1d = engine_1d.draw(10)
self.assertEqual(actual_1d.flatten(), torch.tensor(expected_1d), atol=1e-5, rtol=0)
self.assertEqual(actual_1d.size(), torch.Size([10, 1]))
# make sure random seed if chosen if none is provided
engine_1d_a = torch.quasirandom.SobolEngine(1, scramble=True)
engine_1d_b = torch.quasirandom.SobolEngine(1, scramble=True)
self.assertNotEqual(engine_1d_a.draw(2), engine_1d_b.draw(2))
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
expected_3d = [0.32642800, 0.17881306, 0.68837059, 0.46492538, 0.91789097,
0.58075899, 0.03642474, 0.68229187, 0.20051685, 0.30083340]
actual_3d = engine_3d.draw(10)
self.assertEqual(actual_3d[:, 2], torch.tensor(expected_3d))
self.assertEqual(actual_3d.size(), torch.Size([10, 3]))
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
draws = torch.cat([engine_3d.draw() for _ in range(0, 10)])
self.assertEqual(draws, actual_3d)
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
engine_3d.fast_forward(5)
draws = engine_3d.draw(5)
self.assertEqual(draws, actual_3d[5:])
engine_3d.reset()
self.assertEqual(engine_3d.draw(3), actual_3d[:3])
engine_3d.fast_forward(2)
self.assertEqual(engine_3d.draw(5), actual_3d[5:])
def test_sobolengine_scrambled_lowdim_default_rng(self):
expected_1d = [0.039826, 0.484409, 0.953192, 0.799275, 0.267996]
torch.manual_seed(123456)
engine_1d = torch.quasirandom.SobolEngine(1, scramble=True)
actual_1d = engine_1d.draw(5)
self.assertEqual(actual_1d[:, 0], expected_1d)
torch.manual_seed(123456)
expected_3d = [0.133490, 0.480183, 0.855304, 0.970967, 0.345844]
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True)
actual_3d = engine_3d.draw(5)
self.assertEqual(actual_3d[:, 0], expected_3d)
def test_sobolengine_scrambled_highdim(self):
engine = torch.quasirandom.SobolEngine(1111, scramble=True)
draws = engine.draw(1000)
self.assertTrue(torch.all(draws <= 1))
self.assertTrue(torch.all(draws >= 0))
def test_parsing_int64(self):
# accepts integer arguments
x = torch.cumsum(torch.ones(5, 5), 0)
self.assertEqual(x, torch.cumsum(torch.ones(5, 5), torch.tensor(0)))
# doesn't accept floating point variables
self.assertRaises(TypeError, lambda: torch.cumsum(torch.ones(5, 5), torch.tensor(0.)))
def test_parsing_double(self):
# accepts floating point and integer arguments
x = torch.randn(2, 3)
torch.isclose(x, x, 1, 1)
self.assertTrue(torch.isclose(x, x, 1, 1).all())
self.assertTrue(torch.isclose(x, x, 1.5, 1.).all())
# accepts floating point and integer tensors
self.assertTrue(torch.isclose(x, x, torch.tensor(1), torch.tensor(1)).all())
self.assertTrue(torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1.)).all())
# doesn't accept variables with requires_grad
self.assertRaises(TypeError,
lambda: torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1., requires_grad=True)).all())
def test_parsing_intlist(self):
# parse with integer variables
self.assertEqual(torch.Size([3, 4]), torch.ones((torch.tensor(3), torch.tensor(4))).shape)
self.assertEqual(torch.Size([3, 4]), torch.ones(torch.tensor(3), torch.tensor(4)).shape)
# parse with numpy integers
self.assertEqual(torch.Size([3, 4]), torch.ones((np.array(3), np.int64(4))).shape)
self.assertEqual(torch.Size([3, 4]), torch.ones(np.array(3), np.int64(4)).shape)
self.assertEqual(torch.Size([3, 4]), torch.ones((np.int64(3), np.array(4))).shape)
self.assertEqual(torch.Size([3, 4]), torch.ones(np.int64(3), np.array(4)).shape)
# fail parse with float variables
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3.), torch.tensor(4))))
# fail parse with numpy floats
self.assertRaises(TypeError, lambda: torch.ones((np.float(3.), torch.tensor(4))))
self.assertRaises(TypeError, lambda: torch.ones((np.array(3.), torch.tensor(4))))
# fail parse with > 1 element variables
self.assertRaises(TypeError, lambda: torch.ones(torch.tensor(3, 3)))
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3, 3))))
self.assertRaises(TypeError, lambda: torch.ones(np.array(3, 3)))
self.assertRaises(TypeError, lambda: torch.ones((np.array(3, 3))))
# fail parse with additional positional args after intlist arg
self.assertRaisesRegex(TypeError,
"received an invalid combination of arguments",
lambda: torch.LongTensor((6, 0), 1, 1, 0))
self.assertRaisesRegex(TypeError,
"missing 1 required positional arguments",
lambda: torch.tensor().new_zeros((5, 5), 0))
def test_half_tensor(self):
devices = ["cpu"]
if torch.cuda.is_available():
devices.append("cuda")
# contiguous tensor
# non-contiguous tensor
# dense non-overlapping tensor
# non-dense non-overlapping sliced tensor
# non-dense overlapping equal strides
for device in devices:
tset = (
torch.randn(4, 3, 2, device=device, dtype=torch.float).contiguous(),
torch.randn(4, 3, 2, device=device, dtype=torch.float).transpose(0, 1),
torch.randn(4, 3, 2, device=device, dtype=torch.float),
torch.randn(4, 3, 2, device=device, dtype=torch.float)[:, :, ::2],
torch.empty_strided(
(4, 2, 3), (10, 3, 3), device=device, dtype=torch.float
).copy_(torch.rand((4, 2, 3), dtype=torch.float, device=device)),
)
for x in tset:
self.assertEqual(x.half().float(), x, atol=1e-3, rtol=0)
xh = x.half()
with tempfile.NamedTemporaryFile() as f:
torch.save(xh, f)
f.seek(0)
xh2 = torch.load(f)
self.assertEqual(xh.float(), xh2.float())
def test_from_buffer(self):
a = bytearray([1, 2, 3, 4])
self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4])
shorts = torch.ShortStorage.from_buffer(a, 'big')
self.assertEqual(shorts.size(), 2)
self.assertEqual(shorts.tolist(), [258, 772])
ints = torch.IntStorage.from_buffer(a, 'little')
self.assertEqual(ints.size(), 1)
self.assertEqual(ints[0], 67305985)
f = bytearray([0x40, 0x10, 0x00, 0x00])
floats = torch.FloatStorage.from_buffer(f, 'big')
self.assertEqual(floats.size(), 1)
self.assertEqual(floats[0], 2.25)
f = bytearray([0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x10, 0x40])
bools = torch.BoolStorage.from_buffer(f, 'big')
self.assertEqual(bools.size(), 8)
self.assertEqual(bools.tolist(), [False, True, True, True, True, True, True, True])
self.assertEqual(bools.type(), 'torch.BoolStorage')
f = bytearray(b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9')
bools = torch.BoolStorage.from_buffer(f, 'big')
self.assertEqual(bools.size(), 19)
f = bytearray(b'\0x4A')
bools = torch.BoolStorage.from_buffer(f, 'big')
self.assertEqual(bools.size(), 4)
self.assertEqual(bools.tolist(), [False, True, True, True])
def test_storage_casts(self):
storage = torch.IntStorage([-1, 0, 1, 2, 3, 4])
self.assertEqual(storage.size(), 6)
self.assertEqual(storage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(storage.type(), 'torch.IntStorage')
self.assertIs(storage.dtype, torch.int32)
floatStorage = storage.float()
self.assertEqual(floatStorage.size(), 6)
self.assertEqual(floatStorage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(floatStorage.type(), 'torch.FloatStorage')
self.assertEqual(floatStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(floatStorage.dtype, torch.float32)
halfStorage = storage.half()
self.assertEqual(halfStorage.size(), 6)
self.assertEqual(halfStorage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(halfStorage.type(), 'torch.HalfStorage')
self.assertEqual(halfStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(halfStorage.dtype, torch.float16)
bfloat16Storage = storage.bfloat16()
self.assertEqual(bfloat16Storage.size(), 6)
self.assertEqual(bfloat16Storage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(bfloat16Storage.type(), 'torch.BFloat16Storage')
self.assertEqual(bfloat16Storage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(bfloat16Storage.dtype, torch.bfloat16)
longStorage = storage.long()
self.assertEqual(longStorage.size(), 6)
self.assertEqual(longStorage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(longStorage.type(), 'torch.LongStorage')
self.assertEqual(longStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(longStorage.dtype, torch.int64)
shortStorage = storage.short()
self.assertEqual(shortStorage.size(), 6)
self.assertEqual(shortStorage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(shortStorage.type(), 'torch.ShortStorage')
self.assertEqual(shortStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(shortStorage.dtype, torch.int16)
doubleStorage = storage.double()
self.assertEqual(doubleStorage.size(), 6)
self.assertEqual(doubleStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
self.assertEqual(doubleStorage.type(), 'torch.DoubleStorage')
self.assertEqual(doubleStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(doubleStorage.dtype, torch.float64)
charStorage = storage.char()
self.assertEqual(charStorage.size(), 6)
self.assertEqual(charStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
self.assertEqual(charStorage.type(), 'torch.CharStorage')
self.assertEqual(charStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(charStorage.dtype, torch.int8)
byteStorage = storage.byte()
self.assertEqual(byteStorage.size(), 6)
self.assertEqual(byteStorage.tolist(), [255, 0, 1, 2, 3, 4])
self.assertEqual(byteStorage.type(), 'torch.ByteStorage')
self.assertEqual(byteStorage.int().tolist(), [255, 0, 1, 2, 3, 4])
self.assertIs(byteStorage.dtype, torch.uint8)
boolStorage = storage.bool()
self.assertEqual(boolStorage.size(), 6)
self.assertEqual(boolStorage.tolist(), [True, False, True, True, True, True])
self.assertEqual(boolStorage.type(), 'torch.BoolStorage')
self.assertEqual(boolStorage.int().tolist(), [1, 0, 1, 1, 1, 1])
self.assertIs(boolStorage.dtype, torch.bool)
complexfloat_storage = torch.ComplexFloatStorage([-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j])
self.assertEqual(complexfloat_storage.size(), 6)
self.assertEqual(complexfloat_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j])
self.assertEqual(complexfloat_storage.type(), 'torch.ComplexFloatStorage')
self.assertIs(complexfloat_storage.dtype, torch.complex64)
complexdouble_storage = complexfloat_storage.complex_double()
self.assertEqual(complexdouble_storage.size(), 6)
self.assertEqual(complexdouble_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j])
self.assertEqual(complexdouble_storage.type(), 'torch.ComplexDoubleStorage')
self.assertIs(complexdouble_storage.dtype, torch.complex128)
def test_from_file(self):
def assert_with_filename(filename):
size = 10000
s1 = torch.FloatStorage.from_file(filename, True, size)
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
# check mapping
s2 = torch.FloatStorage.from_file(filename, True, size)
t2 = torch.FloatTensor(s2)
self.assertEqual(t1, t2, atol=0, rtol=0)
# check changes to t1 from t2
rnum = random.uniform(-1, 1)
t1.fill_(rnum)
self.assertEqual(t1, t2, atol=0, rtol=0)
# check changes to t2 from t1
rnum = random.uniform(-1, 1)
t2.fill_(rnum)
self.assertEqual(t1, t2, atol=0, rtol=0)
# release the tensors
del s1, t1, s2, t2
with TemporaryFileName() as fname:
assert_with_filename(fname)
if IS_FILESYSTEM_UTF8_ENCODING:
with TemporaryDirectoryName(suffix='中文') as dname, TemporaryFileName(dir=dname) as fname:
assert_with_filename(fname)
def test_torch_from_file(self):
def assert_with_filename(filename):
size = 10000
s1 = torch.from_file(filename, True, size, dtype=torch.float)
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
# check mapping
s2 = torch.from_file(filename, True, size, dtype=torch.float)
t2 = torch.FloatTensor(s2)
self.assertEqual(t1, t2, atol=0, rtol=0)
# check changes to t1 from t2
rnum = random.uniform(-1, 1)
t1.fill_(rnum)
self.assertEqual(t1, t2, atol=0, rtol=0)
# check changes to t2 from t1
rnum = random.uniform(-1, 1)
t2.fill_(rnum)
self.assertEqual(t1, t2, atol=0, rtol=0)
# release the tensors
del s1, t1, s2, t2
with TemporaryFileName() as fname:
assert_with_filename(fname)
if IS_FILESYSTEM_UTF8_ENCODING:
with TemporaryDirectoryName(suffix='中文') as dname, TemporaryFileName(dir=dname) as fname:
assert_with_filename(fname)
def test_print(self):
default_type = torch.Tensor().type()
for t in torch._tensor_classes:
if t == torch.HalfTensor:
continue # HalfTensor does not support fill
if t.is_sparse:
continue
if t.is_cuda and not torch.cuda.is_available():
continue
obj = t(100, 100).fill_(1)
obj.__repr__()
str(obj)
# test half tensor
obj = torch.rand(100, 100, device='cpu').half()
obj.__repr__()
str(obj)
for t in torch._storage_classes:
if t == torch.BFloat16Storage:
continue # Fix once fill is enabled for bfloat16
if t.is_cuda and not torch.cuda.is_available():
continue
if t == torch.BoolStorage or t == torch.cuda.BoolStorage:
obj = t(100).fill_(True)
else:
obj = t(100).fill_(1)
obj.__repr__()
str(obj)
# test complex tensor
# complex tensor print uses two formatters, one for real values
# and the other for imag values. this is consistent with numpy
x = torch.tensor([2.3 + 4j, 7 + 6j])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([2.3000+4.j, 7.0000+6.j])''')
# test scientific notation for complex tensors
x = torch.tensor([1e28 + 2j , -1e-28j])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.0000e+28+2.0000e+00j, -0.0000e+00-1.0000e-28j])''')
# test big integer
x = torch.tensor(2341234123412341)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor(2341234123412341)''')
# test scientific notation
x = torch.tensor([1e28, 1e-28])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.0000e+28, 1.0000e-28])''')
# test scientific notation using set_printoptions
x = torch.tensor([1e2, 1e-2])
torch.set_printoptions(sci_mode=True)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.0000e+02, 1.0000e-02])''')
torch.set_printoptions(sci_mode=False)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([ 100.0000, 0.0100])''')
torch.set_printoptions(sci_mode=None) # reset to the default value
# test no leading space if all elements positive
x = torch.tensor([1, 2])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1, 2])''')
# test for leading space if there are negative elements
x = torch.tensor([1, -2])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([ 1, -2])''')
# test inf and nan
x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([4.0000, inf, 1.5000, -inf, 0.0000, nan, 1.0000])''')
y = torch.tensor([4, inf, complex(1.5, inf), complex(-inf, 4), 0, complex(nan, inf), complex(3, nan)])
self.assertEqual(y.__repr__(), str(y))
expected_str = '''\
tensor([4.0000+0.j, inf+0.j, 1.5000+infj, -inf+4.j, 0.0000+0.j, nan+infj,
3.0000+nanj])'''
self.assertExpectedInline(str(y), expected_str)
# test dtype
torch.set_default_dtype(torch.float)
x = torch.tensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309], dtype=torch.float64)
self.assertEqual(x.__repr__(), str(x))
expected_str = '''\
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
inf], dtype=torch.float64)'''
self.assertExpectedInline(str(x), expected_str)
# test changing default dtype
torch.set_default_dtype(torch.float64)
self.assertEqual(x.__repr__(), str(x))
expected_str = '''\
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
inf])'''
self.assertExpectedInline(str(x), expected_str)
# test summary
x = torch.zeros(10000)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([0., 0., 0., ..., 0., 0., 0.])''')
# test internal summary function
x = torch.rand(1, 20, 5, 30)
summary = torch._tensor_str.get_summarized_data(x)
self.assertEqual(summary.shape, (1, 6, 5, 6))
first_and_last = [0, 1, 2, -3, -2, -1]
self.assertEqual(summary, x[:, first_and_last][..., first_and_last])
# test device
if torch.cuda.is_available():
x = torch.tensor([123], device='cuda:0')
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''')
# test changing default to cuda
torch.set_default_tensor_type(torch.cuda.FloatTensor)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([123])''')
# test printing a tensor on a different gpu than current one.
if torch.cuda.device_count() >= 2:
with torch.cuda.device(1):
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''')
# test printing cpu tensor when default device is cuda
y = torch.tensor([123], device='cpu')
self.assertEqual(y.__repr__(), str(y))
self.assertExpectedInline(str(y), '''tensor([123], device='cpu')''')
torch.set_default_tensor_type(default_type)
# test integral floats and requires_grad
x = torch.tensor([123.], requires_grad=True)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([123.], requires_grad=True)''')
# test non-contiguous print
# sliced tensor should have > PRINT_OPTS.threshold elements
x = torch.ones(100, 2, 2, 10)
y = x.as_strided(size=(100, 2, 10), stride=(2 * 2 * 10, 2 * 10, 1))
self.assertEqual(str(y), y.__repr__())
expected_str = '''\
tensor([[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
...,
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]]])\
'''
self.assertExpectedInline(str(y), expected_str)
x = torch.ones(100, 2, 2, 10) * (1 + 1j)
y = x.as_strided(size=(100, 2, 10), stride=(2 * 2 * 10, 2 * 10, 1))
self.assertEqual(str(y), y.__repr__())
expected_str = '''\
tensor([[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
...,
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]]])\
'''
self.assertExpectedInline(str(y), expected_str)
# test print 0-dim tensor: there's no 0-dim in Numpy, we match arrayprint style
x = torch.tensor(0.00002)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor(2.0000e-05)''')
# test print boolean tensor
x = torch.tensor([True])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([True])''')
x = torch.tensor(True)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor(True)''')
# [Numpy] test print float in sci_mode when min < 0.0001.
x = torch.tensor([0.00002])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([2.0000e-05])''')
# [Numpy] test print complex in sci_mode when real_min < 0.0001 and (or) imag_min < 0.0001.
x = torch.tensor([0.00002]) * (1 + 1j)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([2.0000e-05+2.0000e-05j])''')
# [Numpy] test print float in sci_mode when max > 1e8.
# TODO: Pytorch uses fixed precision to print, while Numpy uses dragon4_scientific
# to do automatic trimming and padding.
x = torch.tensor([123456789.])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.2346e+08])''')
# [Numpy] test print float in sci_mode when max / min > 1000.
x = torch.tensor([0.01, 11])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.0000e-02, 1.1000e+01])''')
# [Numpy] test print int max / min > 1000, no sci_mode
x = torch.tensor([1, 1010])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([ 1, 1010])''')
# [Numpy] test print int > 1e8, no sci_mode
x = torch.tensor([1000000000]) # 1e9
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1000000000])''')
# [Numpy] test printing float in int_mode
x = torch.tensor([1., 1000.])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([ 1., 1000.])''')
# [Numpy] test printing float in int_mode in sci format when max / min > 1000.
x = torch.tensor([1., 1010.])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.0000e+00, 1.0100e+03])''')
def test_sizeof(self) -> None:
sizeof_empty = torch.randn(0).storage().__sizeof__()
sizeof_10 = torch.randn(10).storage().__sizeof__()
sizeof_100 = torch.randn(100).storage().__sizeof__()
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
sizeof_empty = torch.randn(0).to(torch.uint8).storage().__sizeof__()
sizeof_10 = torch.randn(10).to(torch.uint8).storage().__sizeof__()
sizeof_100 = torch.randn(100).to(torch.uint8).storage().__sizeof__()
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
def test_iter(self) -> None:
x = torch.randn(5, 5)
for i, sub in enumerate(x):
self.assertEqual(sub, x[i])
x = torch.Tensor()
self.assertEqual(list(x), [])
def test_assertEqual(self) -> None:
x = torch.FloatTensor([0])
self.assertEqual(x, 0)
xv = torch.autograd.Variable(x)
self.assertEqual(xv, 0)
self.assertEqual(x, xv)
self.assertEqual(xv, x)
# Tests that setting atol or rtol without the other throws
self.assertRaises(AssertionError,
lambda: self.assertEqual(x, xv, atol=4))
self.assertRaises(AssertionError,
lambda: self.assertEqual(x, xv, rtol=4))
self.assertRaisesRegex(TypeError, "takes from 3 to 4 positional arguments",
lambda: self.assertEqual(x, xv, "", 1.0)) # type: ignore
def test_new(self) -> None:
x = torch.autograd.Variable(torch.Tensor())
y = torch.autograd.Variable(torch.randn(4, 4))
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
self.assertEqual(x.new().shape, [0])
self.assertEqual(x.new(), x)
self.assertEqual(x.new(1, 2).shape, [1, 2])
self.assertEqual(x.new(torch.Size([3, 4])).shape, [3, 4])
self.assertEqual(x.new([3, 4]).shape, [2])
self.assertEqual(x.new([3, 4]).tolist(), [3, 4])
self.assertEqual(x.new((3, 4)).tolist(), [3, 4])
self.assertEqual(x.new([np.int32(3), np.float64(4)]).tolist(), [3, 4])
self.assertEqual(x.new(np.array((3, 4))).tolist(), [3, 4])
self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4])
self.assertEqual(x.new(size=(3, 4)).shape, [3, 4])
self.assertEqual(x.new(()).shape, [0])
self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr())
self.assertEqual(x.new(y).data_ptr(), y.data_ptr())
self.assertIsNot(x.new(y), y)
self.assertRaises(TypeError, lambda: x.new(z))
# TypeError would be better
self.assertRaises(RuntimeError, lambda: x.new(z.storage()))
@unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property")
def test_pin_memory(self):
x = torch.randn(3, 5)
self.assertFalse(x.is_pinned())
if not torch.cuda.is_available():
self.assertRaises(RuntimeError, lambda: x.pin_memory())
else:
pinned = x.pin_memory()
self.assertTrue(pinned.is_pinned())
self.assertEqual(pinned, x)
self.assertNotEqual(pinned.data_ptr(), x.data_ptr())
# test that pin_memory on already pinned tensor has no effect
self.assertIs(pinned, pinned.pin_memory())
self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr())
def test_error_msg_type_translation(self):
with self.assertRaisesRegex(
RuntimeError,
# message includes both Double and Long
'(?=.*Double)(?=.*Long)'):
# Calls model with a LongTensor input but DoubleTensor weights
input = torch.zeros(1, 1, 1, 6, dtype=torch.long)
weight = torch.nn.Parameter(torch.zeros(1, 1, 1, 3, dtype=torch.double))
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
model.weight = weight
out = model(input)
def test_apply(self):
x = torch.arange(1, 6)
res = x.clone().apply_(lambda k: k + k)
self.assertEqual(res, x * 2)
self.assertRaises(TypeError, lambda: x.apply_(lambda k: "str"))
def test_map(self):
x = torch.autograd.Variable(torch.randn(3, 3))
y = torch.autograd.Variable(torch.randn(3))
res = x.clone()
res.map_(y, lambda a, b: a + b)
self.assertEqual(res, x + y)
self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str"))
def test_map2(self):
x = torch.autograd.Variable(torch.randn(3, 3))
y = torch.autograd.Variable(torch.randn(3))
z = torch.autograd.Variable(torch.randn(1, 3))
res = x.clone()
res.map2_(y, z, lambda a, b, c: a + b * c)
self.assertEqual(res, x + y * z)
z.requires_grad = True
self.assertRaisesRegex(
RuntimeError, "requires grad",
lambda: res.map2_(y, z, lambda a, b, c: a + b * c))
def test_Size(self):
x = torch.Size([1, 2, 3])
self.assertIsInstance(x, tuple)
self.assertEqual(x[0], 1)
self.assertEqual(x[1], 2)
self.assertEqual(x[2], 3)
self.assertEqual(len(x), 3)
self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3)))
self.assertIsInstance(x * 2, torch.Size)
self.assertIsInstance(x[:-1], torch.Size)
self.assertIsInstance(x + x, torch.Size)
def test_Size_scalar(self):
three = torch.tensor(3)
two = torch.tensor(2)
x = torch.Size([0, 1, two, three, 4])
for i in range(1, 5):
self.assertEqual(x[i], i)
def test_Size_iter(self):
for sizes in [iter([1, 2, 3, 4, 5]), range(1, 6)]:
x = torch.Size(sizes)
for i in range(0, 5):
self.assertEqual(x[i], i + 1)
def test_t_not_2d_error(self):
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t())
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t_())
# skip this test for now as it affects all tests
@unittest.skipIf(True, "flush_denormal not supported")
def test_set_flush_denormal(self):
tiny_float = 1e-42
tiny_double = 1e-320
float_tensor = torch.FloatTensor([1.0, tiny_float])
double_tensor = torch.DoubleTensor([1.0, tiny_float, tiny_double])
self.assertEqual(float_tensor[0], 1.0, atol=0.0, rtol=0)
self.assertEqual(float_tensor[1], tiny_float, atol=tiny_float / 16, rtol=0)
self.assertEqual(double_tensor[0], 1.0, atol=0.0, rtol=0)
self.assertEqual(double_tensor[1], tiny_float, atol=0.0, rtol=0)
self.assertEqual(double_tensor[2], tiny_double, atol=0.0, rtol=0)
torch.set_flush_denormal(True)
self.assertEqual(float_tensor[0], 1.0, atol=0.0, rtol=0)
self.assertEqual(float_tensor[1], 0.0, atol=0.0, rtol=0) # tiny_float to zero
self.assertEqual(double_tensor[0], 1.0, atol=0.0, rtol=0)
# tiny_float is not converted to zero in double type
self.assertEqual(double_tensor[1], tiny_float, atol=0.0, rtol=0)
self.assertEqual(double_tensor[2], 0.0, atol=0.0, rtol=0) # tiny_double to zero
torch.set_flush_denormal(False)
def test_show_config(self):
# We can't usefully test the output; just make sure this doesn't crash
torch.__config__.show()
@unittest.skipIf(IS_FBCODE, "CXX_FLAGS is only for OSS build.")
def test_cxx_flags(self):
torch.__config__._cxx_flags()
def test_parallel_info(self):
torch.__config__.parallel_info()
@slowTest
def test_slow_test(self):
# Just a smoketest to make sure our slowTest decorator works.
pass
def test_is_nonzero(self):
with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"):
torch.tensor([]).is_nonzero()
with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with more than one value is ambiguous"):
torch.tensor([0, 0]).is_nonzero()
self.assertFalse(torch.tensor(0).is_nonzero())
self.assertTrue(torch.tensor(1).is_nonzero())
self.assertFalse(torch.tensor([0]).is_nonzero())
self.assertTrue(torch.tensor([1]).is_nonzero())
self.assertFalse(torch.tensor([[0]]).is_nonzero())
self.assertTrue(torch.tensor([[1]]).is_nonzero())
# NB: we must not be built with CUDA; if we are built with CUDA but no CUDA
# is available, we get a different error.
@unittest.skipIf(torch.backends.cuda.is_built() or IS_SANDCASTLE, "CUDA is built, can't test CUDA not built error")
def test_cuda_not_built(self):
msg = "Torch not compiled with CUDA enabled"
self.assertRaisesRegex(AssertionError, msg, lambda: torch.cuda.current_device())
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1], device="cuda"))
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).cuda())
self.assertRaisesRegex(TypeError, msg, lambda: torch.cuda.FloatTensor())
self.assertRaisesRegex(TypeError, msg, lambda: torch.set_default_tensor_type(torch.cuda.FloatTensor))
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).to(device="cuda"))
def test_has_internal_overlap(self):
OVERLAP_NO = 0
OVERLAP_YES = 1
OVERLAP_TOO_HARD = 2
# Check for contiguous tensors
a = torch.randn(3, 3)
self.assertEqual(torch._debug_has_internal_overlap(a), OVERLAP_NO)
# Checks for zero strides
b = torch.randn(1, 3)
b_expanded = b.expand(4, 3)
self.assertEqual(torch._debug_has_internal_overlap(b_expanded), OVERLAP_YES)
# Check for zero strided, size 1 axis, in non-contiguous storage (gh-33812)
c = torch.randn(10).as_strided([2, 1, 5], [1, 0, 2])
self.assertEqual(torch._debug_has_internal_overlap(c), OVERLAP_TOO_HARD)
def test_allow_tensor_metadata_change(self):
def do_test(t):
with self.assertRaisesRegex(
RuntimeError,
"set_sizes_contiguous is not allowed on a Tensor created from .data or .detach()"):
t.resize_((2, 1))
with self.assertRaisesRegex(
RuntimeError,
"set_storage is not allowed on a Tensor created from .data or .detach()"):
t.set_()
with self.assertRaisesRegex(
RuntimeError,
"set_storage_offset is not allowed on a Tensor created from .data or .detach()"):
t.set_(t.storage(), 0, t.size(), list(t.stride()))
do_test(torch.tensor([[1, 2]]).data)
do_test(torch.tensor([[1, 2]]).detach())
def test_c10_layer_norm(self):
# test that we can call c10 ops and they return a reasonable result
X = torch.rand(5, 5, dtype=torch.float)
weight = torch.rand(*X.size()[1:], dtype=torch.float)
bias = torch.rand(*X.size()[1:], dtype=torch.float)
epsilon = 1e-4
expected_norm = torch.nn.functional.layer_norm(
X, X.size()[1:], weight=weight, bias=bias, eps=epsilon)
actual_norm, actual_mean, actual_stdev = \
torch.ops._caffe2.LayerNorm(torch.tensor(X), torch.tensor(
weight), torch.tensor(bias), 1, epsilon, True)
torch.testing.assert_allclose(expected_norm, actual_norm)
def test_memory_format(self):
def test_helper(x, memory_format):
y = x.contiguous(memory_format=memory_format)
self.assertFalse(y.is_contiguous())
self.assertTrue(y.is_contiguous(memory_format=memory_format))
self.assertEqual(y, x)
test_helper(torch.randn(4, 3, 8, 8), torch.channels_last)
test_helper(torch.randn(4, 3, 8, 8, 8), torch.channels_last_3d)
def test_memory_format_contiguous_returns_same_tensor_if_already_satisfies(self):
def test_helper(x, memory_format):
alias = x.contiguous(memory_format=memory_format)
alias.fill_(7)
self.assertEqual(x, alias)
test_helper(torch.randn(4, 8, 8, 3).permute(0, 3, 1, 2), torch.channels_last)
test_helper(torch.randn(4, 8, 8, 8, 3).permute(0, 4, 1, 2, 3), torch.channels_last_3d)
def test_memory_format_empty(self):
def test_helper(dim1, dim2, memory_format):
with self.assertRaises(RuntimeError):
x = torch.empty(dim1, memory_format=memory_format)
x = torch.empty(dim2, memory_format=memory_format)
self.assertTrue(x.is_contiguous(memory_format=memory_format))
test_helper((3, 3), (3, 3, 3, 3), torch.channels_last)
test_helper((3, 3, 3), (3, 3, 3, 3, 3), torch.channels_last_3d)
def test_subclass_tensors(self):
# raise an error when trying to subclass FloatTensor
with self.assertRaisesRegex(TypeError, "type 'torch.FloatTensor' is not an acceptable base type"):
class Foo1(torch.FloatTensor):
pass
# but allow subclassing Tensor:
class Foo2(torch.Tensor):
def foo(self):
return 5
f = Foo2()
self.assertEqual(f.foo(), 5)
def test_ndim(self):
a = torch.randn(1, 2, 3)
self.assertEqual(3, a.ndim)
b = torch.randn(())
self.assertEqual(0, b.ndim)
c = torch.randn(1, 0)
self.assertEqual(2, c.ndim)
def test_fill_diagonal(self):
a1 = torch.randn(7, 3)
a2 = a1.clone()
v = 1
for i in range(3):
a2[i][i] = v
a1.fill_diagonal_(v)
self.assertEqual(a1, a2)
b1 = torch.randn(7, 3)
b2 = b1.clone()
for i in range(3):
b2[i][i] = v
b2[i + 4][i] = v
b1.fill_diagonal_(v, wrap=True)
self.assertEqual(b1, b2)
c1 = torch.rand(3, 3, 3)
c2 = c1.clone()
for i in range(3):
c2[i][i][i] = v
c1.fill_diagonal_(v)
self.assertEqual(c1, c2)
# non-contiguous tensor
d1 = torch.rand(3, 3, 3)[:, 1, ...]
d2 = d1.clone()
for i in range(3):
d2[i][i] = v
d1.fill_diagonal_(v)
self.assertEqual(d1, d2)
e1 = torch.rand(7, 3, 3)[:, 1, ...]
e2 = e1.clone()
for i in range(3):
e2[i][i] = v
e2[i + 4][i] = v
e1.fill_diagonal_(v, wrap=True)
self.assertEqual(e1, e2)
def test_batch_norm_cpu_inference(self):
# input nchw in (2,1,1,1), (2,2,2,2)
inputs = [
torch.tensor([[[[-0.5000]]], [[[0.5000]]]]),
torch.tensor([
[
[[-0.5000, 0.5000], [-1.0000, 1.0000]],
[[-0.2500, -0.5000], [0.2500, 0.5000]]
],
[
[[0.1000, 1.0000], [1.0000, 0.1000]],
[[1.0000, 0.5000], [1.5000, -1.5000]]
]])]
# output nchw in (2,1,1,1), (2,2,2,2)
outputs = [
torch.tensor([
[[[-0.499997496604919433593750000]]],
[[[0.499997496604919433593750000]]]]),
torch.tensor([
[[[-0.499997496604919433593750000, 0.499997496604919433593750000],
[-0.999994993209838867187500000, 0.999994993209838867187500000]],
[[-0.249998748302459716796875000, -0.499997496604919433593750000],
[0.249998748302459716796875000, 0.499997496604919433593750000]]],
[[[0.099999502301216125488281250, 0.999994993209838867187500000],
[0.999994993209838867187500000, 0.099999502301216125488281250]],
[[0.999994993209838867187500000, 0.499997496604919433593750000],
[1.499992489814758300781250000, -1.499992489814758300781250000]]]])]
for i in range(len(inputs)):
for affine in [False, True]:
m = torch.nn.BatchNorm2d(inputs[i].size()[1], 1e-05, 0.1, affine=affine)
m.eval()
# contiguous case
input1 = inputs[i].contiguous()
output1 = m(input1)
# non-contiguous case
input2 = input1.permute(0, 1, 3, 2)
output2 = m(input2).permute(0, 1, 3, 2)
# channels last case
input3 = input1.contiguous(memory_format=torch.channels_last)
output3 = m(input3)
self.assertEqual(output3, outputs[i])
self.assertEqual(output3, output1)
self.assertEqual(output3, output2)
def test_empty_meta(self):
x = torch.empty_meta(2 ** 20, 2 ** 20)
y = torch.empty_meta(2 ** 20)
z = x + y
self.assertEqual(z.size(), (2 ** 20, 2 ** 20))
self.assertRaises(RuntimeError, lambda: z[0][0].item())
def test_upsample_nearest1d_meta(self):
# TODO: this is not a sustainable way of testing meta functions,
# but I want some quick scaffolding first before a more
# integrated testing strategy
# NB: Can't make the exponent too big, or it will overflow
# signed 64-bit integer
x = torch.empty_meta(2 * 10 ** 8, 3, 2 * 10 ** 8)
z = torch.nn.functional.interpolate(x, scale_factor=2)
self.assertEqual(z.size(), (2 * 10 ** 8, 3, 4 * 10 ** 8))
self.assertRaises(RuntimeError, lambda: z[0][0][0].item())
# interpolate doesn't seem to support out=
# (not sure why passing None here doesn't work? How strange...)
z = torch.empty_meta(0)
torch._C._nn.upsample_nearest1d(x, (4 * 10 ** 8,), 2, out=z)
self.assertEqual(z.size(), (2 * 10 ** 8, 3, 4 * 10 ** 8))
self.assertRaises(RuntimeError, lambda: z[0][0][0].item())
def test_normal_shape(self):
warned = False
for device in torch.testing.get_all_device_types():
tensor1 = torch.rand(1, device=device)
tensor4 = torch.rand(4, device=device)
tensor120 = torch.rand(120, device=device)
tensor2145 = torch.rand(2, 1, 4, 5, device=device)
tensor2345 = torch.rand(2, 3, 4, 5, device=device)
tensor2345_non_contiguous = torch.rand(2, 4, 3, 5, device=device).permute(0, 2, 1, 3)
tensor2345_channels_last = tensor2345.contiguous(memory_format=torch.channels_last)
output2345 = torch.zeros(2, 3, 4, 5, device=device)
output345 = torch.zeros(3, 4, 5, device=device)
# inputs have same size
self.assertEqual(torch.normal(tensor2345, tensor2345).size(), (2, 3, 4, 5))
self.assertEqual(torch.normal(tensor2345_non_contiguous, tensor2345).size(), (2, 3, 4, 5))
self.assertEqual(torch.normal(tensor2345, tensor2345_channels_last).size(), (2, 3, 4, 5))
self.assertEqual(torch.normal(tensor2345_non_contiguous, tensor2345_channels_last).size(), (2, 3, 4, 5))
# scalar case
self.assertEqual(torch.normal(tensor2345, 2).size(), (2, 3, 4, 5))
self.assertEqual(torch.normal(2, tensor2345).size(), (2, 3, 4, 5))
# inputs are expandable tensors
self.assertEqual(torch.normal(tensor2345, tensor1).size(), (2, 3, 4, 5))
self.assertEqual(torch.normal(tensor2145, tensor2345).size(), (2, 3, 4, 5))
# inputs are non-expandable tensors, but they have same number of elements
# TORCH_WARN_ONCE is used in torch.normal, only 1st assertEqual will show warn msg
if not warned:
self.assertWarnsRegex(UserWarning, "deprecated and the support will be removed",
lambda: self.assertEqual(torch.normal(tensor120, tensor2345).size(), (120,)))
warned = True
else:
self.assertEqual(torch.normal(tensor120, tensor2345).size(), (120,))
self.assertEqual(torch.normal(tensor2345, tensor120).size(), (2, 3, 4, 5))
# inputs are non-expandable tensors and they don't have same number of elements
with self.assertRaisesRegex(RuntimeError, "inconsistent tensor"):
torch.normal(tensor2345, tensor4)
# output and inputs are size compatible
self.assertEqual(torch.normal(tensor2345, tensor2345, out=output2345).size(), (2, 3, 4, 5))
# output and inputs are not size compatible
with self.assertRaisesRegex(RuntimeError, "inconsistent tensor"):
# inputs are expandable but have different broadcasted size than output
torch.normal(tensor2345, tensor2145, out=output345)
with self.assertRaisesRegex(RuntimeError, "inconsistent tensor"):
# inputs are not expandable but reshapeable, output size is not the same as mean
torch.normal(tensor2345, tensor120, out=output345)
def test_tensoriterator_output_setup(self):
# Test whether the output's memory layout is correct
def test_memory_layout(x, y, scale, zero_point, out):
self.assertEqual(x.dim(), 4)
self.assertEqual(x.size(), y.size())
self.assertEqual(y.size(), out.size())
shape = x.size()
for n in range(shape[0]):
for c in range(shape[1]):
for h in range(shape[2]):
for w in range(shape[3]):
if scale is not None and zero_point is not None:
self.assertEqual(
out[n][c][h][w],
torch.ops.quantized.add(x[n][c][h][w], y[n][c][h][w], scale, zero_point))
else:
self.assertEqual(out[n][c][h][w], x[n][c][h][w] + y[n][c][h][w])
xraw = torch.rand(2, 3, 4, 4)
yraw = torch.rand(2, 3, 4, 4)
qxraw = torch.quantize_per_tensor(xraw, 0.1, 5, torch.quint8)
qyraw = torch.quantize_per_tensor(yraw, 0.1, 5, torch.quint8)
# contiguous case fast setup
test_memory_layout(xraw, yraw, None, None, xraw + yraw)
test_memory_layout(qxraw, qyraw, 0.1, 5, torch.ops.quantized.add(qxraw, qyraw, 0.1, 5))
# channels last case fast setup
x = xraw.contiguous(memory_format=torch.channels_last)
y = yraw.contiguous(memory_format=torch.channels_last)
test_memory_layout(x, y, None, None, x + y)
qx = qxraw.contiguous(memory_format=torch.channels_last)
qy = qyraw.contiguous(memory_format=torch.channels_last)
test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5))
# non contiguous case fast setup (dense, non-overlapping, same shape and strides)
x = xraw.permute(0, 2, 3, 1)
y = yraw.permute(0, 2, 3, 1)
test_memory_layout(x, y, None, None, x + y)
qx = qxraw.permute(0, 2, 3, 1)
qy = qyraw.permute(0, 2, 3, 1)
test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5))
# non contiguous case fast setup (dense, non-overlapping)
# input tensors have same shape and strides
# output tensor have same shape as input tensors but different stride
# output tensor should preserve its strides in this case
x = xraw.permute(0, 2, 3, 1)
y = yraw.permute(0, 2, 3, 1)
out = torch.empty_like(xraw)
out = out.permute(0, 3, 2, 1)
expected_stride = out.stride()
test_memory_layout(x, y, None, None, torch.add(x, y, out=out))
self.assertEqual(expected_stride, out.stride())
# non contiguous case non fast setup
x = xraw.permute(0, 2, 3, 1)
y = yraw.permute(0, 3, 2, 1)
test_memory_layout(x, y, None, None, x + y)
qx = qxraw.permute(0, 2, 3, 1)
qy = qyraw.permute(0, 3, 2, 1)
test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5))
# Tests to make sure we still handle .data properly until it is removed
def test_dot_data_use(self):
# .data allows to change the Tensors types inplace, check that we still
# raise a nice error.
with self.assertRaisesRegex(
RuntimeError,
# message includes both Double and Long
'(?=.*Double)(?=.*Long)'):
# Calls model with a LongTensor input but DoubleTensor weights
input = torch.randn(1, 1, 1, 6, dtype=torch.double)
weight = torch.zeros(1, 1, 1, 3, dtype=torch.long)
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
model.weight.data = weight
out = model(input)
# Functions to test negative dimension wrapping
METHOD = 1
INPLACE_METHOD = 2
FUNCTIONAL = 4
DIM_ARG = None
def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0):
def neg_dim_test(self):
if isinstance(tensor_arg, list):
assert METHOD not in types and INPLACE_METHOD not in types
x = [torch.randn(arg) for arg in tensor_arg]
ndim = len(tensor_arg[-1])
else:
x = torch.randn(*tensor_arg)
ndim = len(tensor_arg)
ndim += extra_dim
n_dim_to_test = sum(e is DIM_ARG for e in arg_constr())
for dims_val in combinations(range(ndim), n_dim_to_test):
arg = arg_constr()
arg_neg = copy.deepcopy(arg)
idx = 0
for i, v in enumerate(arg):
if v is DIM_ARG:
arg[i] = dims_val[idx]
arg_neg[i] = dims_val[idx] - ndim
idx += 1
if METHOD in types:
a = getattr(x, name)(*arg)
b = getattr(x, name)(*arg_neg)
self.assertEqual(a, b)
if INPLACE_METHOD in types:
a = x.clone()
getattr(a, name + '_')(*arg)
b = x.clone()
getattr(b, name + '_')(*arg_neg)
self.assertEqual(a, b)
if FUNCTIONAL in types:
a = getattr(torch, name)(x, *arg)
b = getattr(torch, name)(x, *arg_neg)
self.assertEqual(a, b)
return neg_dim_test
def idx_tensor(size, max_val):
return torch.LongTensor(*size).random_(0, max_val - 1)
def add_neg_dim_tests():
neg_dim_tests = [
('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]),
('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]),
('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]),
('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]),
('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]),
('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]),
('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1),
('logcumsumexp', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('cummax', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('cummin', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('nanmedian', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]),
('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]),
('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]),
('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]),
('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]),
]
for decl in neg_dim_tests:
if len(decl) == 4:
name, tensor_arg, arg_constr, types = decl
extra_dim = 0
elif len(decl) == 5:
name, tensor_arg, arg_constr, types, extra_dim = decl
test_name = 'test_' + name + '_neg_dim'
assert not hasattr(AbstractTestCases._TestTorchMixin, test_name), "Duplicated test name: " + test_name
setattr(AbstractTestCases._TestTorchMixin, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim))
# Device-generic tests. Instantiated below and not run directly.
class TestTorchDeviceType(TestCase):
exact_dtype = True
# TODO: move all tensor creation to common ops
def _rand_shape(self, dim, min_size, max_size):
shape = []
for i in range(dim):
shape.append(random.randint(min_size, max_size))
return tuple(shape)
@onlyCPU
def test_set_deterministic_beta_warning(self, device):
with DeterministicGuard(torch.is_deterministic()):
# Ensures setting to false does not throw a warning
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
torch.set_deterministic(False)
self.assertEqual(len(w), 0)
# Setting set_deterministic(True) throws a warning once per process
with self.maybeWarnsRegex(UserWarning, "torch.set_deterministic is in beta"):
torch.set_deterministic(True)
@dtypes(torch.float32, torch.complex64)
def test_storage(self, device, dtype):
v = torch.randn(3, 5, dtype=dtype, device=device)
self.assertEqual(v.storage()[0], v[0][0])
self.assertEqual(v.storage()[14], v[2][4])
@dtypes(torch.float32, torch.complex64)
def test_deepcopy(self, device, dtype):
from copy import deepcopy
a = torch.randn(5, 5, dtype=dtype, device=device)
b = torch.randn(5, 5, dtype=dtype, device=device)
c = a.view(25)
q = [a, [a.storage(), b.storage()], b, c]
w = deepcopy(q)
self.assertEqual(w[0], q[0], atol=0, rtol=0)
self.assertEqual(w[1][0], q[1][0], atol=0, rtol=0)
self.assertEqual(w[1][1], q[1][1], atol=0, rtol=0)
self.assertEqual(w[1], q[1], atol=0, rtol=0)
self.assertEqual(w[2], q[2], atol=0, rtol=0)
# Check that deepcopy preserves sharing
w[0].add_(1)
for i in range(a.numel()):
self.assertEqual(w[1][0][i], q[1][0][i] + 1)
self.assertEqual(w[3], c + 1)
w[2].sub_(1)
for i in range(a.numel()):
self.assertEqual(w[1][1][i], q[1][1][i] - 1)
@dtypes(torch.float32, torch.complex64)
def test_deepcopy_scalar(self, device, dtype):
from copy import deepcopy
a = torch.tensor(5, dtype=dtype, device=device)
self.assertEqual(a.size(), deepcopy(a).size())
self.assertEqual(a, deepcopy(a))
def check_internal_mem_overlap(self, inplace_op, num_inputs,
dtype, device,
expected_failure=False):
if isinstance(inplace_op, str):
inplace_op = getattr(torch.Tensor, inplace_op)
input = torch.randn(1, dtype=dtype, device=device).expand(3, 3)
inputs = [input] + [torch.randn_like(input)
for i in range(num_inputs - 1)]
if not expected_failure:
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
inplace_op(*inputs)
else:
with self.assertRaises(AssertionError):
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
inplace_op(*inputs)
def unary_check_input_output_mem_overlap(self, data, sz, op,
expected_failure=False):
def _test(op, output, input):
output_exp = torch.empty_like(output)
op(input, out=output_exp)
self.assertEqual(op(input, out=output), output_exp, msg=op.__name__)
# output is identical to input:
_test(op, output=data[0:sz], input=data[0:sz])
# output and input are independent:
_test(op, output=data[0:sz], input=data[sz:2 * sz])
# output partially overlaps with input:
if not expected_failure:
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
_test(op, data[0:sz], data[1:sz + 1])
else:
with self.assertRaises(AssertionError):
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
_test(op, data[0:sz], data[1:sz + 1])
def ternary_check_input_output_mem_overlap(self, op, device,
expected_failure=False):
sz = 3
data = torch.randn(2 * sz, device=device)
other1 = torch.randn(sz, device=device)
other2 = torch.randn(sz, device=device)
self.unary_check_input_output_mem_overlap(
data, sz, lambda input, out: op(input, other1, other2, out=out),
expected_failure=expected_failure)
self.unary_check_input_output_mem_overlap(
data, sz, lambda input, out: op(other1, input, other2, out=out),
expected_failure=expected_failure)
self.unary_check_input_output_mem_overlap(
data, sz, lambda input, out: op(other1, other2, input, out=out),
expected_failure=expected_failure)
def _select_broadcastable_dims(self, dims_full=None):
# select full dimensionality
if dims_full is None:
dims_full = []
ndims = random.randint(1, 4)
dims_full = [random.randint(1, 8) for _ in range(ndims)]
else:
ndims = len(dims_full)
# select actual dimensions for ops:
# larger: full ndims, individual sizes may be reduced
# smaller: possibly reduced ndims, sizes may be reduced
smaller_ndims = random.randint(1, ndims)
dims_small = []
dims_large = []
for i in range(ndims - 1, -1, -1):
j = random.randint(1, 3)
if j == 1: # no reduced singleton dimension
ds = dims_full[i]
dl = dims_full[i]
elif j == 2: # larger may have reduced singleton dimension
ds = dims_full[i]
dl = 1 if len(dims_small) < smaller_ndims else dims_full[i]
elif j == 3: # smaller may have reduced singleton dimension
ds = 1
dl = dims_full[i]
dims_large = [dl] + dims_large
if len(dims_small) < smaller_ndims:
dims_small = [ds] + dims_small
return (dims_small, dims_large, dims_full)
# collected tests of ops that used scalar_check in Declarations.cwrap for
# correctness
def test_scalar_check(self, device):
zero_d = torch.randn((), device=device)
one_d = torch.randn((1,), device=device)
# _multinomial_alias_setup
self.assertRaises(RuntimeError, lambda: torch._multinomial_alias_setup(zero_d))
# remainder
self.assertEqual((), torch.remainder(zero_d, zero_d).shape)
self.assertEqual((), torch.remainder(zero_d, 2).shape)
self.assertEqual((1,), torch.remainder(zero_d, one_d).shape)
self.assertEqual((1,), torch.remainder(one_d, zero_d).shape)
# fmod
self.assertEqual((), torch.fmod(zero_d, zero_d).shape)
self.assertEqual((), torch.fmod(zero_d, 2).shape)
self.assertEqual((1,), torch.fmod(zero_d, one_d).shape)
self.assertEqual((1,), torch.fmod(one_d, zero_d).shape)
# exp, cos, cosh, tan, atan, tanh, erf, erfc, reciprocal
self.assertEqual((), torch.exp(zero_d).shape)
self.assertEqual((), torch.cos(zero_d).shape)
self.assertEqual((), torch.cosh(zero_d).shape)
self.assertEqual((), torch.tan(zero_d).shape)
self.assertEqual((), torch.atan(zero_d).shape)
self.assertEqual((), torch.acosh(zero_d).shape)
self.assertEqual((), torch.asinh(zero_d).shape)
self.assertEqual((), torch.atanh(zero_d).shape)
self.assertEqual((), torch.tanh(zero_d).shape)
self.assertEqual((), torch.erf(zero_d).shape)
self.assertEqual((), torch.erfc(zero_d).shape)
self.assertEqual((), torch.reciprocal(zero_d).shape)
self.assertEqual((1,), torch.exp(one_d).shape)
self.assertEqual((1,), torch.cos(one_d).shape)
self.assertEqual((1,), torch.cosh(one_d).shape)
self.assertEqual((1,), torch.tan(one_d).shape)
self.assertEqual((1,), torch.atan(one_d).shape)
self.assertEqual((1,), torch.acosh(one_d).shape)
self.assertEqual((1,), torch.asinh(one_d).shape)
self.assertEqual((1,), torch.atanh(one_d).shape)
self.assertEqual((1,), torch.tanh(one_d).shape)
self.assertEqual((1,), torch.erf(one_d).shape)
self.assertEqual((1,), torch.erfc(one_d).shape)
self.assertEqual((1,), torch.reciprocal(one_d).shape)
# clamp
self.assertEqual((), torch.clamp(zero_d, min=0, max=1).shape)
self.assertEqual((), torch.clamp(zero_d, min=0).shape)
self.assertEqual((), torch.clamp(zero_d, max=1).shape)
self.assertEqual((1,), torch.clamp(one_d, min=0, max=1).shape)
self.assertEqual((1,), torch.clamp(one_d, min=0).shape)
self.assertEqual((1,), torch.clamp(one_d, max=1).shape)
# cumsum, cumprod, cummax, cummin
self.assertEqual((), torch.logcumsumexp(zero_d, 0).shape)
self.assertEqual((), torch.cumsum(zero_d, 0).shape)
self.assertEqual((), torch.cumprod(zero_d, 0).shape)
self.assertEqual((), torch.cummax(zero_d, 0)[0].shape)
self.assertEqual((), torch.cummin(zero_d, 0)[0].shape)
# renorm
self.assertRaises(RuntimeError, lambda: torch.renorm(zero_d, 0.5, 0, 1.0))
# sort, topk
self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, False)])
self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, True)])
self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, False)])
self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, True)])
# lstsq (gels)
self.assertRaises(RuntimeError, lambda: torch.lstsq(zero_d, zero_d))
# eig
self.assertRaises(RuntimeError, lambda: torch.eig(zero_d, False))
self.assertRaises(RuntimeError, lambda: torch.eig(zero_d, True))
# this is only implemented on cpu
if (torch.device(device).type == 'cpu'):
self.assertRaises(RuntimeError, lambda: torch.ormqr(zero_d, zero_d, zero_d))
# max, min
self.assertEqual((), torch.max(zero_d, zero_d).shape)
self.assertEqual((1,), torch.max(one_d, zero_d).shape)
self.assertEqual((1,), torch.max(zero_d, one_d).shape)
self.assertEqual((), torch.min(zero_d, zero_d).shape)
self.assertEqual((1,), torch.min(one_d, zero_d).shape)
self.assertEqual((1,), torch.min(zero_d, one_d).shape)
# diag
self.assertRaises(RuntimeError, lambda: torch.diag(zero_d))
zero_d_int = torch.tensor(1, device=device)
one_d_int = torch.tensor([1], device=device)
# lshift, rshift
self.assertEqual((), (zero_d_int >> zero_d_int).shape)
self.assertEqual((), (zero_d_int >> 1).shape)
self.assertEqual((1,), (one_d_int >> zero_d_int).shape)
self.assertEqual((1,), (zero_d_int >> one_d_int).shape)
self.assertEqual((1,), (one_d_int >> 1).shape)
self.assertEqual((), (zero_d_int << zero_d_int).shape)
self.assertEqual((), (zero_d_int << 1).shape)
self.assertEqual((1,), (one_d_int << zero_d_int).shape)
self.assertEqual((1,), (zero_d_int << one_d_int).shape)
self.assertEqual((1,), (one_d_int << 1).shape)
# or
self.assertEqual((), (zero_d_int | zero_d_int).shape)
self.assertEqual((), (zero_d_int | 1).shape)
self.assertEqual((1,), (one_d_int | zero_d_int).shape)
self.assertEqual((1,), (zero_d_int | one_d_int).shape)
self.assertEqual((1,), (one_d_int | 1).shape)
# and
self.assertEqual((), (zero_d_int & zero_d_int).shape)
self.assertEqual((), (zero_d_int & 1).shape)
self.assertEqual((1,), (one_d_int & zero_d_int).shape)
self.assertEqual((1,), (zero_d_int & one_d_int).shape)
self.assertEqual((1,), (one_d_int & 1).shape)
# _multinomial_alias_draw
self.assertRaises(RuntimeError, lambda: torch._multinomial_alias_draw(zero_d, zero_d_int, 10))
# clone
self.assertEqual((), zero_d.clone().shape)
zero_d_bool = torch.tensor(True, device=device)
one_d_bool = torch.tensor([True], device=device)
# masked_select
self.assertEqual((1,), torch.masked_select(zero_d_bool, zero_d_bool).shape)
self.assertEqual((1,), torch.masked_select(zero_d_bool, one_d_bool).shape)
self.assertEqual((1,), torch.masked_select(one_d_bool, zero_d_bool).shape)
zero_d_uint8 = torch.tensor(1, dtype=torch.uint8, device=device)
one_d_uint8 = torch.tensor([1], dtype=torch.uint8, device=device)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
self.assertEqual((1,), torch.masked_select(zero_d_uint8, zero_d_uint8).shape)
self.assertEqual((1,), torch.masked_select(zero_d_uint8, one_d_uint8).shape)
self.assertEqual((1,), torch.masked_select(one_d_uint8, zero_d_uint8).shape)
# mode
self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=True)])
self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=False)])
self.assertEqual([(1,), (1,)], [x.shape for x in torch.mode(one_d, dim=0, keepdim=True)])
self.assertEqual([(), ()], [x.shape for x in torch.mode(one_d, dim=0, keepdim=False)])
# max
self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=True)])
self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=False)])
self.assertEqual([(1,), (1,)], [x.shape for x in torch.max(one_d, dim=0, keepdim=True)])
self.assertEqual([(), ()], [x.shape for x in torch.max(one_d, dim=0, keepdim=False)])
# amax
self.assertEqual((), torch.amax(zero_d, dim=0, keepdim=True).shape)
self.assertEqual((), torch.amax(zero_d, dim=0, keepdim=False).shape)
self.assertEqual((1,), torch.amax(one_d, dim=0, keepdim=True).shape)
self.assertEqual((), torch.amax(one_d, dim=0, keepdim=False).shape)
# min
self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=True)])
self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=False)])
self.assertEqual([(1,), (1,)], [x.shape for x in torch.min(one_d, dim=0, keepdim=True)])
self.assertEqual([(), ()], [x.shape for x in torch.min(one_d, dim=0, keepdim=False)])
# amin
self.assertEqual((), torch.amin(zero_d, dim=0, keepdim=True).shape)
self.assertEqual((), torch.amin(zero_d, dim=0, keepdim=False).shape)
self.assertEqual((1,), torch.amin(one_d, dim=0, keepdim=True).shape)
self.assertEqual((), torch.amin(one_d, dim=0, keepdim=False).shape)
# set_
zero_d_clone = zero_d.clone()
one_d_clone = one_d.clone()
self.assertEqual((), zero_d_clone.set_(one_d.storage(), 0, (), ()).shape)
self.assertEqual((1,), zero_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape)
self.assertEqual((), one_d_clone.set_(one_d.storage(), 0, (), ()).shape)
self.assertEqual((1,), one_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape)
self.assertEqual((), zero_d.clone().set_(zero_d).shape)
self.assertEqual((), one_d.clone().set_(zero_d).shape)
self.assertEqual((1,), zero_d.clone().set_(one_d).shape)
self.assertEqual((1,), one_d.clone().set_(one_d).shape)
# take
self.assertEqual((), torch.randn((2, 3), device=device).take(zero_d_int).shape)
self.assertEqual((1,), torch.randn((2, 3), device=device).take(one_d_int).shape)
# gather
self.assertEqual((), torch.gather(zero_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape)
self.assertEqual((1,), torch.gather(zero_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape)
self.assertEqual((), torch.gather(one_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape)
self.assertEqual((1,), torch.gather(one_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape)
# normal
# documentation says out shape matches shape of mean
self.assertEqual((), torch.normal(zero_d, zero_d).shape)
self.assertEqual((1,), torch.normal(one_d, zero_d).shape)
self.assertEqual((), torch.normal(1, zero_d).shape)
self.assertEqual((), torch.normal(zero_d, 1).shape)
self.assertEqual((1,), torch.normal(one_d, 1).shape)
# TODO: this behavior differs on CPU and GPU, see https://github.com/pytorch/pytorch/issues/30480.
# self.assertEqual((), torch.normal(zero_d, one_d).shape)
# self.assertEqual((), torch.normal(1, one_d).shape)
# convolutions. Yes, we are testing nn.functional here; seems justified
# given its similar to the other tests
w = torch.randn(2, 1, 3, 3, device=device).div_(2).requires_grad_()
self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=1))
self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=2))
# nll_loss -- verify input can't be 0-dimensional.
self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, zero_d, reduction='none'))
self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, one_d, reduction='none'))
# verify output is 0-dimensional when reduction != 'none'
for (input, target) in ((torch.randn(1, 1, device=device), torch.tensor([0], device=device)),
(torch.randn(1, 1, 1, 1, device=device), torch.tensor([[[0]]], device=device))):
self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='mean').shape)
self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='sum').shape)
# multilabel_margin_loss
for input in (zero_d, one_d, torch.randn(1, 1, device=device)):
for target in (torch.tensor(0, device=device), torch.tensor([0], device=device), torch.tensor([[0]], device=device)):
if (input.dim() <= 1 and target.dim() <= 1) or (input.dim() == 2 and target.dim() == 2):
output_shape = (target.shape[0],) if target.dim() == 2 else ()
self.assertEqual(output_shape,
torch.nn.functional.multilabel_margin_loss(input, target, reduction='none').shape)
self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean').shape)
self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum').shape)
else:
self.assertRaises(RuntimeError,
lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='none'))
self.assertRaises(RuntimeError,
lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean'))
self.assertRaises(RuntimeError,
lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum'))
# multi_margin_loss
for input in (zero_d, one_d, torch.randn(1, 1, device=device)):
for target in (torch.tensor(0, device=device), torch.tensor([0], device=device)):
self.assertEqual(target.shape, torch.nn.functional.multi_margin_loss(input, target, reduction='none').shape)
self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='mean').shape)
self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='sum').shape)
# Uses mismatched arange out size to trigger a warning
def test_cpp_warnings_have_python_context(self, device):
# Creates long string in advance to avoid a too-long Python line
s = ".+Triggered internally at.+RangeFactories.+"
def cpp_warn_fn():
out = torch.empty((5,))
torch.arange(0, 3, out=out)
return out
# Checks eager-mode cpp warning
with warnings.catch_warnings(record=True) as w:
cpp_warn_fn()
frameinfo = inspect.getframeinfo(inspect.currentframe())
warning = w[0]
# Checks for cpp context in the warning message
self.assertTrue(re.search(s, str(warning.message)) is not None)
# Checks the Python features of the warning
# Note: the eager mode warning refers to the line in the function
# that throws the warning.
self.assertEqual(frameinfo.lineno - 6, warning.lineno)
self.assertEqual(len(w), 1)
# Checks jitted cpp warning
with warnings.catch_warnings(record=True) as w:
scripted_cpp_warn_fn = torch.jit.script(cpp_warn_fn)
scripted_cpp_warn_fn()
warning = w[0]
# Checks for cpp context in the warning message
self.assertTrue(re.search(s, str(warning.message)) is not None)
# Checks the Python features of the warning
# Note: the jitted warning's lineno refers to the call to the jitted
# function, which in our test suite has a layer of indirection
# that makes checking the Python lineno fragile
self.assertEqual(len(w), 1)
# Checks jitted Python warning
def warn_fn():
warnings.warn("Warning!")
# The jit mimics an eager-mode Python warning in this case
with warnings.catch_warnings(record=True) as w:
scripted_warn_fn = torch.jit.script(warn_fn)
scripted_warn_fn()
frameinfo = inspect.getframeinfo(inspect.currentframe())
warning = w[0]
self.assertTrue(re.search('Warning!', str(warning.message)) is not None)
# Checks the Python features of the warning
self.assertEqual(frameinfo.lineno - 6, warning.lineno)
self.assertEqual(len(w), 1)
# TODO: this test should be in test_nn.py
def test_conv_transposed_backward_agnostic_to_memory_format(self, device):
in_channels = 64
out_channels = 128
scale_factor = 8
batch_size = 8
length = 16
conv = torch.nn.ConvTranspose1d(
in_channels, out_channels, kernel_size=scale_factor * 2, stride=scale_factor).to(device)
layer_norm = torch.nn.LayerNorm(out_channels).to(device)
input_ = torch.randn(batch_size, in_channels, length).to(device).contiguous()
input_ = conv(input_).contiguous()
input_ = layer_norm(input_.transpose(1, 2).contiguous()).contiguous()
input_.sum().backward()
# TODO: this test should be in test_nn.py
@largeTensorTest('12GB')
def test_conv_transposed_large(self, device):
# ConvTranspose3d works for large input tensors (gh-32866)
in_channels = 64
out_channels = 128
kernel_size = 5
conv = torch.nn.ConvTranspose3d(
in_channels, out_channels, kernel_size=kernel_size,
stride=2, padding=2, output_padding=1).to(device)
x = torch.rand([1, 64, 8, 128, 172]).to(device)
y = conv(x)
def test_is_set_to(self, device):
t1 = torch.empty(3, 4, 9, 10, device=device)
t2 = torch.empty(3, 4, 9, 10, device=device)
t3 = torch.tensor([], device=device).set_(t1)
t4 = t3.clone().resize_(12, 90)
self.assertFalse(t1.is_set_to(t2))
self.assertTrue(t1.is_set_to(t3))
self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric")
self.assertFalse(t1.is_set_to(t4))
self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()),
"Tensors with no storages should not appear to be set "
"to each other")
t1 = torch.tensor([True, True], dtype=torch.bool, device=device)
t2 = torch.tensor([0], dtype=torch.bool, device=device).set_(t1)
self.assertTrue(t1.is_set_to(t2))
# test that sizes must match
t1 = torch.empty([2, 3, 4], device=device)
t2 = t1.view(4, 3, 2)
self.assertFalse(t1.is_set_to(t2))
self.assertFalse(t2.is_set_to(t1))
# test that legacy empty size behavior used to be respected (i.e. all
# empty tensors were logically collapsed to size [0]).
t1 = torch.empty([2, 5, 0], device=device)
t2 = t1.view([0])
self.assertFalse(t1.is_set_to(t2))
self.assertFalse(t2.is_set_to(t1))
def test_broadcast(self, device):
# all functions
fns = {
"dist", "atan2", "pow", "lerp", "add",
"sub", "mul", "div", "fmod", "remainder",
"eq", "ge", "gt", "le", "lt", "max", "min", "ne",
"addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill",
"map", "map2", "copy"
}
# functions with three tensor arguments
fns_3_args = {"map2"}
fns_value_kwarg = {"addcdiv", "addcmul"}
for fn in fns:
(dims_small, dims_large, dims_full) = self._select_broadcastable_dims()
full1d = torch.randn(*dims_full, device=device).flatten().float()
small = torch.randn(*dims_small, device=device).float()
large = torch.randn(*dims_large, device=device).float()
small_expanded = small.expand(*dims_full)
large_expanded = large.expand(*dims_full)
small2 = None
small2_expanded = None
if fn in fns_3_args or fn in fns_value_kwarg:
# create another smaller tensor
(dims_small2, _, _) = self._select_broadcastable_dims(dims_full)
small2 = torch.randn(*dims_small2, device=device).float()
small2_expanded = small2.expand(*dims_full)
if small.is_cuda and fn in ['map', 'map2']:
# map and map2 are not implementd on CUDA tensors
continue
if hasattr(large_expanded, fn):
# run through tensor versions of functions
# and verify fully expanded inputs give same results
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
def tensorfn(myfn, t1, t2):
if fn == "lerp":
return myfn(t1, 0.5)
elif fn == "masked_select":
return myfn(t1 < 0)
elif fn == "masked_scatter":
return myfn(t1 < 0.5, full1d)
elif fn == "masked_fill":
return myfn(t1 < 0.5, 1.0)
elif fn in fns_3_args:
return myfn(1, t1, t2)
elif fn in fns_value_kwarg:
return myfn(t1, t2, value=1)
else:
return myfn(t1)
# test various orders
for first, second, third in [(large, small, small2), (small, large, small2),
(small2, small, large), (small2, large, small)]:
if first is None:
break # ignore last iter when small2 is None
method_expanded = getattr(expanded[first], fn)
method = getattr(first, fn)
r1 = tensorfn(method_expanded, expanded[second], expanded[third])
r2 = tensorfn(method, second, third)
self.assertEqual(r1, r2)
# now for torch. versions of functions
if hasattr(torch, fn):
fntorch = getattr(torch, fn)
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
def torchfn(t1, t2, t3):
if fn == "lerp":
return fntorch(t1, t2, 0.5)
elif fn == "masked_select":
return fntorch(t1, t2 < 0)
elif fn == "masked_scatter":
return fntorch(t1, t2 < 0.5, full1d)
elif fn == "masked_fill":
return fntorch(t1, t2 < 0.5, 1.0)
elif fn in fns_3_args:
return fntorch(t1, 1.0, t2, t3)
elif fn in fns_value_kwarg:
return fntorch(t1, t2, t3, value=1.0)
else:
return fntorch(t1, t2)
# test various orders
for first, second, third in [(large, small, small2), (small, large, small2),
(small2, small, large), (small2, large, small)]:
if first is None:
break # ignore last iter when small2 is None
r1 = torchfn(expanded[first], expanded[second], expanded[third])
r2 = torchfn(first, second, third)
self.assertEqual(r1, r2)
# now for in place functions
# in-place tensor is not broadcastable; test only guaranteed
# to work by broadcasting other argument(s)
if not hasattr(large_expanded, fn + "_"):
continue
# need to clone largeExpanded so we can reuse, since functions are in-place
large_expanded_clone = large_expanded.clone()
def tensorfn_inplace(t0, t1, t2=None):
t0_fn = getattr(t0, fn + "_")
if fn == "lerp":
return t0_fn(t1, 0.5)
elif fn == "masked_scatter":
return t0_fn(t1 < 0.5, full1d)
elif fn == "masked_fill":
return t0_fn(t1 < 0.5, 1.0)
elif fn == "map":
return t0_fn(t1, lambda x, y: x + y)
elif fn == "map2":
return t0_fn(t1, t2, lambda x, y, z: x + y + z)
elif fn in fns_3_args:
return t0_fn(1.0, t1, t2)
elif fn in fns_value_kwarg:
return t0_fn(t1, t2, value=1.0)
else:
return t0_fn(t1)
# in-place pointwise operations don't actually work if the in-place
# tensor is 0-strided (numpy has the same issue)
if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()):
r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded)
r2 = tensorfn_inplace(large_expanded_clone, small, small2)
self.assertEqual(r1, r2)
def broadcastable(t0, t1, t2=None):
try:
t1.expand_as(t0)
if t2 is not None:
t2.expand_as(t0)
except RuntimeError:
return False
return True
def _test_in_place_broadcastable(t0, t1, t2=None):
if not broadcastable(t0, t1, t2):
same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True)
if not same_size:
self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2))
else:
tensorfn_inplace(t0, t1, t2)
if fn not in fns_3_args and fn not in fns_value_kwarg:
_test_in_place_broadcastable(small, large_expanded)
_test_in_place_broadcastable(small, large)
else:
_test_in_place_broadcastable(small2, small_expanded, large_expanded)
_test_in_place_broadcastable(small2, small, large)
# Ensures that kthvalue throws nondeterministic alerts in the correct cases
@dtypes(torch.double)
def test_kthvalue_nondeterministic_alert(self, device, dtype):
@expectedAlertNondeterministic('kthvalue CUDA', 'cuda')
def test_func(slf, device, call_type):
S = 10
k = 5
a = torch.randn(S, device=device)
if call_type == 'function':
torch.kthvalue(a, k)
elif call_type == 'method':
a.kthvalue(k)
elif call_type == 'out':
values = torch.empty_like(a)
indices = torch.empty((), device=device, dtype=torch.long)
torch.kthvalue(a, k, out=(values, indices))
else:
self.fail(f"'{call_type}' is not a valid call type")
test_func(self, device, 'function')
test_func(self, device, 'method')
test_func(self, device, 'out')
def test_embedding_scalar_weight_error(self, device):
indices = torch.rand(2, 2, device=device).long()
weight = torch.tensor(1.0)
with self.assertRaisesRegex(RuntimeError, "'weight' must be at least 1-D"):
torch.embedding(weight, indices)
def test_dist(self, device):
def run_test(x, y):
for p in [0, 1, 2, 3, 4, inf, -inf]:
dist_xy = torch.dist(x, y, p)
dist_xy_norm = torch.norm(x - y, p)
self.assertEqual(dist_xy, dist_xy_norm)
run_test(torch.randn(5, device=device), torch.randn(5, device=device))
x = torch.zeros(3, device=device)
y = torch.zeros(3, device=device)
y[1] = 1.
run_test(x, y)
# Ensures that median throws nondeterministic alerts in the correct cases
@dtypes(torch.double)
def test_median_nondeterministic_alert(self, device, dtype):
def test_func(slf, device, call_type):
S = 10
a = torch.randn(S, device=device)
if call_type == 'function':
torch.median(a)
elif call_type == 'function with indices':
torch.median(a, 0)
elif call_type == 'method':
a.median()
elif call_type == 'method with indices':
a.median(0)
elif call_type == 'out with indices':
result = torch.empty_like(a)
indices = torch.empty((), dtype=torch.long, device=device)
torch.median(a, 0, out=(result, indices))
else:
self.fail(f"'{call_type}' is not a valid call type")
@expectedAlertNondeterministic('median CUDA with indices output', 'cuda')
def test_func_expect_error(slf, device, call_type):
test_func(slf, device, call_type)
test_func(self, device, 'function')
test_func_expect_error(self, device, 'function with indices')
test_func(self, device, 'method')
test_func_expect_error(self, device, 'method with indices')
test_func_expect_error(self, device, 'out with indices')
@skipCUDANonDefaultStreamIf(True)
def test_multinomial_alias(self, device):
# Get probs vector to use in setup
def get_probs(length, is_contiguous):
probs = torch.softmax(torch.randn(length), 0)
if not is_contiguous:
probs = torch.softmax(torch.randn(length, 2), 0)[:, 1]
assert not (is_contiguous ^ probs.is_contiguous()), "contiguity requirement not met"
return probs.to(device)
for is_contiguous in [True, False]:
probs = get_probs(4, is_contiguous)
alias_table, prob_table = torch._multinomial_alias_setup(probs)
for n_samples in [-1, 1, 10]:
if n_samples > 0:
samples = torch._multinomial_alias_draw(prob_table, alias_table, n_samples)
self.assertEqual(prob_table.size(), torch.Size([4]), msg="size mismatch: probability table")
self.assertEqual(alias_table.size(), torch.Size([4]), msg="size mismatch: alias table")
self.assertEqual(samples.size(), torch.Size([n_samples]), msg="wrong number of samples")
else:
with self.assertRaisesRegex(RuntimeError, "cannot sample <= 0 samples"):
torch._multinomial_alias_draw(prob_table, alias_table, n_samples)
with self.assertRaisesRegex(RuntimeError, "expected 1-D"):
probs = probs.view(2, 2)
torch._multinomial_alias_setup(probs)
with self.assertRaisesRegex(RuntimeError, "expected 1-D"):
a_t, p_t = torch._multinomial_alias_setup(probs)
torch._multinomial_alias_draw(p_t.view(2, 2), a_t.view(2, 2))
MAX_SAMPLES = 200000
for probs in [get_probs(4, True),
torch.tensor([0.8, 0.2], device=device),
torch.tensor([0.7, 0.2, 0.1], device=device)]:
# Check how different the alias distribution and the original distribution are
alias_dist = torch.zeros_like(probs)
alias_table, prob_table = torch._multinomial_alias_setup(probs)
alias_samples = torch._multinomial_alias_draw(prob_table, alias_table, MAX_SAMPLES)
alias_dist = torch.unique(alias_samples, return_counts=True)[1].to(dtype=probs.dtype) / MAX_SAMPLES
self.assertEqual(alias_dist, probs, rtol=0.02, atol=0.0,
msg="Actual: {}\nExpected: {}".format(alias_dist, probs))
for probs in [torch.tensor([0.2501, 0.25, 0.2499, 0.25], device=device),
torch.tensor([0.8, 0.199, 0.001], device=device),
torch.tensor([0.25001, 0.25, 0.24999, 0.25], device=device),
torch.tensor([0.33, 0.34, 0.33], device=device),
torch.tensor([0.8, 0.1999, 0.0001], device=device)]:
# Check the difference between the original probabilities and the reconstructed
# probabilities from the alias and probability tables output by _multinomial_alias_setup
alias_table, prob_table = torch._multinomial_alias_setup(probs)
actual = torch.zeros_like(probs)
for i, vals in enumerate(zip(alias_table, prob_table)):
idx, p = vals
actual[i] += p
actual[idx] += 1. - p
actual = actual / len(probs)
self.assertEqual(actual, probs, atol=1e-6, rtol=0)
# Some special cases
test_cases = [torch.tensor([1.0, 0.0, 0.0], device=device), torch.tensor([0.0, 1.0], device=device)]
for probs in test_cases:
alias_table, prob_table = torch._multinomial_alias_setup(probs)
alias_samples = torch._multinomial_alias_draw(prob_table, alias_table, MAX_SAMPLES)
self.assertEqual(alias_samples.unique(), probs.nonzero().squeeze(-1))
@dtypes(*torch.testing.get_all_fp_dtypes())
def test_log_normal(self, device, dtype):
a = torch.tensor([10], dtype=dtype, device=device).log_normal_()
self.assertEqual(a.dtype, dtype)
self.assertEqual(a.size(), torch.Size([1]))
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
def test_geometric(self, device, dtype):
a = torch.tensor([10], dtype=dtype, device=device).geometric_(0.5)
self.assertEqual(a.dtype, dtype)
self.assertEqual(a.size(), torch.Size([1]))
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False)))
def test_bernoulli_p(self, device, dtype):
for trivial_p in ([0, 1], [1, 0, 1, 1, 0, 1]):
x = torch.tensor(trivial_p, dtype=dtype, device=device)
self.assertEqual(x.bernoulli().tolist(), trivial_p)
def isBinary(t):
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum().item() == 0
p = torch.rand(5, 5, dtype=dtype, device=device)
self.assertTrue(isBinary(p.bernoulli()))
p = torch.rand(5, dtype=dtype, device=device).expand(5, 5)
self.assertTrue(isBinary(p.bernoulli()))
p = torch.rand(5, 5, dtype=dtype, device=device)
torch.bernoulli(torch.rand_like(p), out=p)
self.assertTrue(isBinary(p))
# RngUniform not implemented for Integral type in XLA test
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
@dtypesIfCPU(*(torch.testing.get_all_dtypes(include_half=False, include_bfloat16=False, include_complex=False)))
@dtypesIfCUDA(*(torch.testing.get_all_dtypes(include_bfloat16=False, include_complex=False)))
def test_bernoulli_self(self, device, dtype):
def isBinary(t):
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum().item() == 0
t = torch.empty(10, 10, dtype=dtype, device=device)
t.fill_(2)
t.bernoulli_(0.5)
self.assertTrue(isBinary(t))
for p_dtype in torch.testing.get_all_fp_dtypes(include_half=device.startswith('cuda'),
include_bfloat16=False):
p = torch.rand(10, dtype=p_dtype, device=device).expand(10, 10)
t.fill_(2)
t.bernoulli_(p)
self.assertTrue(isBinary(t))
t.fill_(2)
torch.bernoulli(torch.rand_like(t, dtype=p_dtype), out=t)
self.assertTrue(isBinary(t))
t.fill_(2)
t.bernoulli_(torch.rand_like(t, dtype=p_dtype))
self.assertTrue(isBinary(t))
@slowTest
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False)))
def test_bernoulli_edge_cases(self, device, dtype):
# Need to draw a lot of samples to cover every random floating point number.
a = torch.zeros(10000, 10000, dtype=dtype, device=device) # probability of drawing "1" is 0
num_ones = (torch.bernoulli(a) == 1).sum()
self.assertEqual(num_ones, 0)
b = torch.ones(10000, 10000, dtype=dtype, device=device) # probability of drawing "1" is 1
num_zeros = (torch.bernoulli(b) == 0).sum()
self.assertEqual(num_zeros, 0)
@dtypes(*torch.testing.get_all_fp_dtypes())
def test_exponential(self, device, dtype):
a = torch.tensor([10], dtype=dtype, device=device).exponential_(0.5)
self.assertEqual(a.dtype, dtype)
self.assertEqual(a.size(), torch.Size([1]))
# Tests extremal behavior
tests = ((-0, float('inf')), (0, float('inf')), (float('inf'), 0))
for test in tests:
t = torch.empty((1,), device=device, dtype=dtype).exponential_(test[0])
self.assertTrue(t.item() == test[1])
# Tests that negative lambda fails
with self.assertRaises(RuntimeError):
torch.empty((1,), device=device, dtype=dtype).exponential_(-0.5)
@skipIfNoSciPy
@dtypes(*torch.testing.get_all_fp_dtypes())
def test_uniform_kstest(self, device, dtype):
from scipy import stats
size = 1000
for from_ in [-42, 0, 4.2]:
for to_ in [-4.2, 0, 42]:
if to_ > from_:
t = torch.empty(size, dtype=dtype, device=device).uniform_(from_, to_)
res = stats.kstest(t.cpu().to(torch.double), 'uniform', args=(from_, (to_ - from_)))
self.assertTrue(res.statistic < 0.1)
@skipIfNoSciPy
@dtypes(*torch.testing.get_all_fp_dtypes(include_bfloat16=False))
@dtypesIfCUDA(*torch.testing.get_all_fp_dtypes())
def test_normal_kstest(self, device, dtype):
from scipy import stats
size = 1000
for mean in [-10, 0, 50]:
for std in [1, 5, 10]:
t = torch.empty(size, dtype=dtype, device=device).normal_(mean=mean, std=std)
res = stats.kstest(t.cpu().to(torch.double), 'norm', args=(mean, std))
self.assertTrue(res.statistic < 0.1)
@skipIfNoSciPy
@dtypes(*torch.testing.get_all_fp_dtypes())
def test_lognormal_kstest(self, device, dtype):
from scipy import stats
size = 1000
for mean in [-3, 0, 7]:
for std in [1, 5, 7]:
t = torch.empty(size, dtype=dtype, device=device).log_normal_(mean=mean, std=std)
res = stats.kstest(t.cpu().to(torch.double), 'lognorm', args=(std, 0, math.exp(mean)))
if dtype == torch.half:
self.assertTrue(res.statistic < 0.3)
else:
self.assertTrue(res.statistic < 0.1)
@skipIfNoSciPy
@dtypes(*torch.testing.get_all_fp_dtypes())
def test_exponential_kstest(self, device, dtype):
from scipy import stats
size = 1000
for lambd in [0.5, 1.0, 5.0]:
t = torch.empty(size, dtype=dtype, device=device).exponential_(lambd=lambd)
res = stats.kstest(t.cpu().to(torch.double), 'expon', args=(0, 1 / lambd,))
self.assertTrue(res.statistic < 0.1)
@skipIfNoSciPy
@dtypes(*torch.testing.get_all_fp_dtypes())
def test_cauchy_kstest(self, device, dtype):
from scipy import stats
size = 1000
for median in [-10, 0, 50]:
for sigma in [0.5, 1.0, 10.0]:
t = torch.empty(size, dtype=dtype, device=device).cauchy_(median=median, sigma=sigma)
res = stats.kstest(t.cpu().to(torch.double), 'cauchy', args=(median, sigma))
self.assertTrue(res.statistic < 0.1)
@skipIfNoSciPy
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
def test_geometric_kstest(self, device, dtype):
from scipy import stats
size = 1000
for p in [0.2, 0.5, 0.8]:
t = torch.empty(size, dtype=dtype, device=device).geometric_(p=p)
actual = np.histogram(t.cpu().to(torch.double), np.arange(1, 100))[0]
expected = stats.geom(p).pmf(np.arange(1, 99)) * size
res = stats.chisquare(actual, expected)
self.assertEqual(res.pvalue, 1.0, atol=0.1, rtol=0)
def test_pairwise_distance_empty(self, device):
shape = (2, 0)
x = torch.randn(shape, device=device)
y = torch.randn(shape, device=device)
self.assertEqual(torch.zeros(2, device=device), torch.pairwise_distance(x, y))
self.assertEqual(torch.zeros((2, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
shape = (0, 2)
x = torch.randn(shape, device=device)
y = torch.randn(shape, device=device)
self.assertEqual(torch.zeros(0, device=device), torch.pairwise_distance(x, y))
self.assertEqual(torch.zeros((0, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
def test_pdist_empty(self, device):
shape = (0, 2)
x = torch.randn(shape, device=device)
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
shape = (1, 2)
x = torch.randn(shape, device=device)
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
shape = (3, 0)
x = torch.randn(shape, device=device)
self.assertEqual(torch.zeros(3, device=device), torch.pdist(x))
def test_cdist_empty(self, device):
x = torch.randn((0, 5), device=device)
y = torch.randn((4, 5), device=device)
self.assertEqual(torch.empty(0, 4, device=device), torch.cdist(x, y))
x = torch.randn((2, 5), device=device)
y = torch.randn((0, 5), device=device)
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
x = torch.randn((2, 0), device=device)
y = torch.randn((3, 0), device=device)
self.assertEqual(torch.zeros(2, 3, device=device), torch.cdist(x, y))
x = torch.randn((2, 0), device=device)
y = torch.randn((0, 0), device=device)
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
def _brute_cdist(self, x, y, p=2):
r1 = x.shape[-2]
r2 = y.shape[-2]
if r1 == 0 or r2 == 0:
return torch.empty(r1, r2, device=x.device)
return torch.norm(x[..., None, :] - y[..., None, :, :], p=p, dim=-1)
def test_cdist_norm(self, device):
for r1 in [3, 4, 5, 6]:
for m in [2, 3, 4, 10]:
for r2 in [4, 6, 7, 8]:
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
x = torch.randn(r1, m, device=device)
y = torch.randn(r2, m, device=device)
if p == 2:
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertEqual(expected, actual, rtol=0, atol=0.02)
else:
actual = torch.cdist(x, y, p=p)
expected = self._brute_cdist(x, y, p=p)
self.assertEqual(expected, actual)
def test_cdist_norm_batch(self, device):
for r1 in [3, 4, 5, 6]:
for m in [2, 3, 4, 10]:
for r2 in [4, 6, 7, 8]:
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
x = torch.randn(2, 3, 6, r1, m, device=device)
y = torch.randn(2, 3, 6, r2, m, device=device)
if p == 2:
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertEqual(expected, actual, rtol=0, atol=0.02)
else:
actual = torch.cdist(x, y, p=p)
expected = self._brute_cdist(x, y, p=p)
self.assertEqual(expected, actual)
@tf32_on_and_off(0.005)
def test_cdist_large(self, device):
for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
x = torch.randn(1000, 10, device=device)
y = torch.randn(1000, 10, device=device)
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertEqual(expected, actual)
@slowTest
@tf32_on_and_off(0.01)
def test_cdist_large_batch(self, device):
for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
x = torch.randn(4, 3, 1000, 10, device=device)
y = torch.randn(4, 3, 1000, 10, device=device)
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertEqual(expected, actual)
@tf32_on_and_off(0.005)
def test_cdist_non_contiguous(self, device):
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
x = torch.randn(5, 7, device=device).transpose(-1, -2)
y = torch.randn(5, 3, device=device).transpose(-1, -2)
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertFalse(x.is_contiguous())
self.assertFalse(y.is_contiguous())
self.assertEqual(expected, actual)
x = torch.randn(7, 5, device=device)
y = torch.randn(5, 3, device=device).t()
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertTrue(x.is_contiguous())
self.assertFalse(y.is_contiguous())
self.assertEqual(expected, actual)
x = torch.randn(5, 7, device=device).t()
y = torch.randn(3, 5, device=device)
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertFalse(x.is_contiguous())
self.assertTrue(y.is_contiguous())
self.assertEqual(expected, actual)
@tf32_on_and_off()
def test_cdist_non_contiguous_batch(self, device):
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
x = torch.randn(4, 3, 2, 5, 7, device=device).transpose(-1, -2)
y = torch.randn(4, 3, 2, 5, 3, device=device).transpose(-1, -2)
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertFalse(x.is_contiguous())
self.assertFalse(y.is_contiguous())
self.assertEqual(expected, actual)
x = torch.randn(7, 2, 7, 5, device=device)
y = torch.randn(7, 2, 5, 3, device=device).transpose(-1, -2)
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertTrue(x.is_contiguous())
self.assertFalse(y.is_contiguous())
self.assertEqual(expected, actual)
x = torch.randn(4, 5, 7, device=device).transpose(-1, -2)
y = torch.randn(4, 3, 5, device=device)
actual = torch.cdist(x, y, p=2, compute_mode=cm)
expected = self._brute_cdist(x, y, p=2)
self.assertFalse(x.is_contiguous())
self.assertTrue(y.is_contiguous())
self.assertEqual(expected, actual)
def test_multinomial_constraints(self, device):
x = torch.empty(1, 2, 3, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "prob_dist must be 1 or 2 dim",
lambda: torch.multinomial(x, 2))
x = torch.empty(1, 2, dtype=torch.long, device=device)
self.assertRaisesRegex(
RuntimeError, "multinomial only supports floating-point dtypes for input",
lambda: torch.multinomial(x, 2))
x = torch.empty(1, 2, dtype=torch.double, device=device)
y = torch.empty(1, 2, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "multinomial expects Long tensor out",
lambda: torch.multinomial(x, 2, out=y))
x = torch.empty(2, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "cannot sample n_sample <= 0 samples",
lambda: torch.multinomial(x, 0))
x = torch.empty(2, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "cannot sample n_sample <= 0 samples",
lambda: torch.multinomial(x, -1))
x = torch.empty(2, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "cannot sample n_sample > prob_dist",
lambda: torch.multinomial(x, 3, False))
x = torch.empty(16777217, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "number of categories cannot exceed",
lambda: torch.multinomial(x, 3))
def test_cumsum(self, device):
x = torch.rand(100, 100, device=device)
res1 = torch.cumsum(x, 1)
res2 = torch.Tensor().to(device)
torch.cumsum(x, 1, out=res2)
self.assertEqual(res1, res2)
x.cumsum_(1)
self.assertEqual(res1, x)
a = torch.tensor([[True, False, True],
[False, False, False],
[True, True, True]], device=device)
b = a.byte()
aRes = torch.cumsum(a, 0)
bRes = torch.cumsum(b, 0)
self.assertEqual(aRes, bRes)
self.assertEqual(aRes, torch.tensor([[1, 0, 1],
[1, 0, 1],
[2, 1, 2]]))
aRes = torch.cumsum(a, 1)
bRes = torch.cumsum(b, 1)
self.assertEqual(aRes, bRes)
self.assertEqual(aRes, torch.tensor([[1, 1, 2],
[0, 0, 0],
[1, 2, 3]]))
# Check that cummulative sum over a zero length dimension doesn't crash on backprop.
# Also check that cumsum over other dimensions in a tensor with a zero-length
# dimensiuon also works
# Also include a basic suite of similar tests for other bases cases.
shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]]
for shape in shapes:
for dim in range(len(shape)):
raw_tensor = torch.zeros(*shape, requires_grad=True)
integrated = raw_tensor.cumsum(dim=dim)
# Check that backward does not crash
integrated.sum().backward()
# Check that output maintained correct shape
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
# Check a scalar example
raw_tensor = torch.tensor(3., requires_grad=True)
integrated = raw_tensor.cumsum(dim=-1)
self.assertEqual(raw_tensor, integrated)
# Check that backward does not crash
integrated.sum().backward()
# Check that output maintained correct shape
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
def test_cumprod(self, device):
x = torch.rand(100, 100, device=device)
res1 = torch.cumprod(x, 1)
res2 = torch.Tensor().to(device)
torch.cumprod(x, 1, out=res2)
self.assertEqual(res1, res2)
x.cumprod_(1)
self.assertEqual(res1, x)
a = torch.tensor([[True, False, True],
[False, False, False],
[True, True, True]], dtype=torch.bool, device=device)
b = a.byte()
aRes = torch.cumprod(a, 0)
bRes = torch.cumprod(b, 0)
self.assertEqual(aRes, bRes)
self.assertEqual(aRes, torch.tensor([[1, 0, 1],
[0, 0, 0],
[0, 0, 0]]))
aRes = torch.cumprod(a, 1)
bRes = torch.cumprod(b, 1)
self.assertEqual(aRes, bRes)
self.assertEqual(aRes, torch.tensor([[1, 0, 0],
[0, 0, 0],
[1, 1, 1]]))
# Check that cummulative prod over a zero length dimension doesn't crash on backprop.
# Also check that cumprod over other dimensions in a tensor with a zero-length
# dimensiuon also works
# Also include a basic suite of similar tests for other bases cases.
shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]]
for shape in shapes:
for dim in range(len(shape)):
raw_tensor = torch.zeros(*shape, requires_grad=True)
integrated = raw_tensor.cumprod(dim=dim)
# Check that backward does not crash
integrated.sum().backward()
# Check that output maintained correct shape
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
# Check a scalar example
raw_tensor = torch.tensor(3., requires_grad=True)
integrated = raw_tensor.cumprod(dim=-1)
self.assertEqual(raw_tensor, integrated)
# Check that backward does not crash
integrated.sum().backward()
# Check that output maintained correct shape
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
def test_cummax_cummin(self, device):
def test_ops(op, string_of_function_name, expected_output1, expected_output2):
x = torch.rand(100, 100, device=device)
out1 = op(x, 1)
res2 = torch.empty(0, device=device)
indices2 = torch.empty(0, dtype=torch.int64, device=device)
op(x, 1, out=(res2, indices2))
self.assertEqual(out1[0], res2)
self.assertEqual(out1[1], indices2)
a = torch.tensor([[True, False, True],
[False, False, False],
[True, True, True]], dtype=torch.bool, device=device)
b = a.byte()
aRes = op(a, 0)
bRes = op(b, 0)
self.assertEqual(aRes[0], bRes[0].bool())
self.assertEqual(aRes[0], expected_output1.bool())
# test inf and nan input
x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1])
xRes = op(x, 0)[0]
self.assertEqual(xRes, expected_output2)
# op shouldn't support values, indices with a dtype, device type or layout
# different from that of input tensor
t = torch.randn(10)
values = torch.empty(0, dtype=torch.int16)
indices = torch.empty(0, dtype=torch.int64)
with self.assertRaisesRegex(
RuntimeError,
'expected scalar_type Float but found Short'):
op(t, 0, out=(values, indices))
# Check that op over a zero length dimension doesn't crash on backprop.
# Also check that op over other dimensions in a tensor with a zero-length
# dimension also works
# Also include a basic suite of similar tests for other bases cases.
shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]]
for shape in shapes:
for dim in range(len(shape)):
raw_tensor = torch.zeros(*shape, requires_grad=True)
integrated = getattr(raw_tensor, string_of_function_name)(dim=dim)
# Check that backward does not crash
integrated[0].sum().backward()
# Check that output maintained correct shape
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
# Check a scalar example
raw_tensor = torch.tensor(3., requires_grad=True)
integrated = getattr(raw_tensor, string_of_function_name)(dim=-1)
# Check that backward does not crash
integrated[0].sum().backward()
# Check that output maintained correct shape
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
expected_out = torch.tensor([4, inf, inf, inf, inf, nan, nan])
test_ops(torch.cummax, "cummax", torch.tensor([[1, 0, 1],
[1, 0, 1],
[1, 1, 1]]), expected_out)
expected_out = torch.tensor([4, 4, 1.5, -inf, -inf, nan, nan])
test_ops(torch.cummin, "cummin", torch.tensor([[1, 0, 1],
[0, 0, 0],
[0, 0, 0]]), expected_out)
def test_logcumsumexp(self, device):
def logcumsumexp(a, axis):
return torch.cumsum(a.exp(), axis=axis).log_()
axis = 1
a = torch.randn(100, 100, device=device)
actual = a.logcumsumexp(1)
expected = logcumsumexp(a, axis)
self.assertEqual(a.dtype, actual.dtype)
self.assertEqual(expected.shape, actual.shape)
self.assertEqual(expected, actual)
# Check that out is actually inplace
b = torch.randn(5, 2, device=device)
inplace_out = torch.zeros(5, 2, device=device)
expected = logcumsumexp(b, axis)
torch.logcumsumexp(b, axis=axis, out=inplace_out)
self.assertEqual(inplace_out, expected)
# Check input and inplace_output type mismatch
b = torch.randn(5, 2, device=device, dtype=torch.float64)
inplace_out = torch.zeros(5, 2, device=device, dtype=torch.float32)
with self.assertRaisesRegex(
RuntimeError,
'expected scalar_type Double but found Float'):
torch.logcumsumexp(b, axis, out=inplace_out)
def _test_large_cum_fn_helper(self, x, fn):
x_cpu = x.cpu().float()
expected = fn(x_cpu)
actual = fn(x).cpu().float()
self.assertEqual(expected, actual.cpu().float())
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "sandcastle OOM with current tpx gpu/re configuration")
@onlyCUDA
@dtypesIfCUDA(torch.half) # only small dtype not to get oom
def test_large_cumsum(self, device, dtype):
# initialization to avoid overflow and half caveats
x = torch.empty(2**30 + 200, device=device, dtype=dtype)
x[::3] = -3
x[1::3] = 2
x[2::3] = 1
self._test_large_cum_fn_helper(x, lambda x: torch.cumsum(x, 0))
@onlyCUDA
@dtypesIfCUDA(torch.half) # only small dtype not to get oom
def test_large_cumprod(self, device, dtype):
# initialization to avoid overflow and half caveats
x = torch.empty(2**30 + 200, device=device, dtype=dtype)
x[::3] = 8
x[1::3] = .25
x[2::3] = .5
self._test_large_cum_fn_helper(x, lambda x: torch.cumprod(x, 0))
def test_discontiguous_out_cumsum(self, device):
x = torch.randn(4, 8, device=device)
y = torch.empty(4, 16, device=device)[:, ::2]
out = torch.cumsum(x, 0)
torch.cumsum(x, 0, out=y)
self.assertFalse(y.is_contiguous())
self.assertEqual(out, y, atol=0., rtol=0.)
def _test_cumminmax_helper(self, x, fn, expected_val, expected_ind):
val, ind = fn(x, -1)
self.assertEqual(val, expected_val, atol=0, rtol=0)
self.assertEqual(ind, expected_ind, atol=0, rtol=0)
out_val = torch.empty_like(val).t().contiguous().t()
out_ind = torch.empty_like(ind).t().contiguous().t()
fn(x, -1, out=(out_val, out_ind))
self.assertFalse(out_val.is_contiguous())
self.assertFalse(out_ind.is_contiguous())
self.assertEqual(out_val, expected_val, atol=0, rtol=0)
self.assertEqual(out_ind, expected_ind, atol=0, rtol=0)
def test_cummax_discontiguous(self, device):
x = torch.tensor([[0, 1, 2, 3, 2, 1], [4, 5, 6, 5, 6, 7]], device=device, dtype=torch.float).t().contiguous().t()
expected_val = torch.tensor([[0, 1, 2, 3, 3, 3], [4, 5, 6, 6, 6, 7]], device=device, dtype=torch.float)
expected_ind = torch.tensor([[0, 1, 2, 3, 3, 3], [0, 1, 2, 2, 4, 5]], device=device, dtype=torch.long)
self._test_cumminmax_helper(x, torch.cummax, expected_val, expected_ind)
def test_cummin_discontiguous(self, device):
x = torch.tensor([[3, 2, 1, 0, 1, 2], [7, 6, 5, 4, 5, 2]], device=device, dtype=torch.float).t().contiguous().t()
expected_val = torch.tensor([[3, 2, 1, 0, 0, 0], [7, 6, 5, 4, 4, 2]], device=device, dtype=torch.float)
expected_ind = torch.tensor([[0, 1, 2, 3, 3, 3], [0, 1, 2, 3, 3, 5]], device=device, dtype=torch.long)
self._test_cumminmax_helper(x, torch.cummin, expected_val, expected_ind)
def test_bool_tensor_value_change(self, device):
x = torch.tensor([True, False], dtype=torch.bool, device=device)
x[0] = False
x[1] = True
self.assertEqual(x, torch.tensor([False, True], dtype=torch.bool, device=device))
def test_unfold_all_devices_and_dtypes(self, device):
for dt in torch.testing.get_all_dtypes():
if dt == torch.bool:
x = torch.empty((0, 1, 3, 0), dtype=dt, device=device)
self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape)
else:
x = torch.empty((0, 1, 3, 0), dtype=dt, device=device)
self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape)
def test_unfold_scalars(self, device):
x = torch.tensor(0.5, device=device)
# unfold on a 0-dimensional tensor should always return a 1-d dimensional
# tensor of shape [size] (i.e., the second parameter to unfold)
self.assertEqual(torch.empty(0, device=device), x.unfold(0, 0, 1))
self.assertEqual(torch.empty(0, device=device), x.unfold(0, 0, 2))
self.assertEqual(torch.tensor([0.5], device=device), x.unfold(0, 1, 1))
def test_copy_all_dtypes_and_devices(self, device):
from copy import copy
for dt in torch.testing.get_all_dtypes():
x = torch.tensor([1, 2, 3, 4], dtype=dt, device=device)
x_clone = x.clone()
y = copy(x)
y.fill_(1)
# copy is a shallow copy, only copies the tensor view,
# not the data
self.assertEqual(x, y)
def test_clone_all_dtypes_and_devices(self, device):
for dt in torch.testing.get_all_dtypes():
x = torch.tensor((1, 1), dtype=dt, device=device)
y = x.clone()
self.assertEqual(x, y)
def test_clone_zero_stride_dim(self, device):
# stride zero, size 1 axis, not contiguous
x = torch.randn(10)
y = x.as_strided([2, 1, 5], [1, 0, 2])
self.assertEqual(y, y.clone())
@dtypesIfCUDA(*set(torch.testing.get_all_math_dtypes('cuda')))
@dtypes(*set(torch.testing.get_all_math_dtypes('cpu')))
def test_addcmul(self, device, dtype):
def rand_tensor(size, dtype, device):
if dtype.is_floating_point or dtype.is_complex:
return torch.rand(size=size, dtype=dtype, device=device)
if dtype == torch.uint8:
return torch.randint(1, 5, size=size, dtype=dtype, device=device)
else:
return torch.randint(-5, 5, size=size, dtype=dtype, device=device)
a = rand_tensor((2, 2), dtype=dtype, device=device)
b = rand_tensor((2, 2), dtype=dtype, device=device)
c = rand_tensor((2, 2), dtype=dtype, device=device)
alpha = _number(0.5, 3, dtype)
actual = torch.addcmul(a, b, c, value=alpha)
expected = a + alpha * b * c
self.assertEqual(expected, actual)
with self.maybeWarnsRegex(
UserWarning, "This overload of addcmul is deprecated"):
self.assertEqual(actual, torch.addcmul(a, alpha, b, c))
def test_narrow_empty(self, device):
x = torch.randn(2, 3, 4, device=device)
for d in range(x.dim()):
y = x.narrow(d, x.size(d), 0)
sz = list(x.size())
sz[d] = 0
self.assertEqual(sz, y.size())
def test_index_copy(self, device):
num_copy, num_dest = 3, 20
dest = torch.randn(num_dest, 4, 5, device=device)
src = torch.randn(num_copy, 4, 5, device=device)
idx = torch.randperm(num_dest, device=device).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_copy_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = src[i]
self.assertEqual(dest, dest2, atol=0, rtol=0)
dest = torch.randn(num_dest, device=device)
src = torch.randn(num_copy, device=device)
idx = torch.randperm(num_dest, device=device).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_copy_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = src[i]
self.assertEqual(dest, dest2, atol=0, rtol=0)
# Bool tensor
dest = torch.zeros(2, 2, dtype=torch.bool, device=device)
src = torch.tensor([[True, True], [True, True]], device=device)
index = torch.tensor([0, 1], device=device)
dest.index_copy_(0, index, src)
self.assertEqual(dest, torch.tensor([[True, True], [True, True]], device=device))
# Error cases
a = torch.randn(3, 5)
c = torch.zeros(3)
self.assertRaises(IndexError, lambda: a.index_copy_(dim=1, index=torch.tensor([3]), source=c))
# Ensures that index_copy throws nondeterministic alerts in the correct cases
@onlyOnCPUAndCUDA
@dtypes(torch.double)
def test_index_copy_nondeterministic_alert(self, device, dtype):
@expectedAlertNondeterministic('index_copy')
def test_func(slf, device, call_type):
S = 10
a = torch.randn(S, device=device)
b = torch.randn(S, device=device)
index = torch.randint(S, (S,), device=device)
if call_type == 'function':
torch.index_copy(a, 0, index, b)
elif call_type == 'method':
a.index_copy(0, index, b)
elif call_type == 'method inplace':
a.index_copy_(0, index, b)
else:
self.fail(f"'{call_type}' is not a valid call type")
test_func(self, device, 'function')
test_func(self, device, 'method')
test_func(self, device, 'method inplace')
def test_index_fill(self, device):
for dt in torch.testing.get_all_dtypes():
if dt == torch.half or dt == torch.bfloat16 or dt.is_complex:
continue
x = torch.tensor([[1, 2], [4, 5]], dtype=dt, device=device)
index = torch.tensor([0], device=device)
x.index_fill_(1, index, 0)
self.assertEqual(x, torch.tensor([[0, 2], [0, 5]], dtype=dt, device=device))
def test_index_select(self, device):
for dtype in [torch.int, torch.long]:
src = torch.randn(3, 4, 5, device=device)
# Index can be duplicated.
idx = torch.tensor([2, 1, 0, 1, 2], dtype=dtype, device=device)
dest = torch.index_select(src, 0, idx)
self.assertEqual(dest.shape, (5, 4, 5))
for i in range(idx.size(0)):
self.assertEqual(dest[i], src[idx[i]])
# Check that 'out' is used correctly.
out = torch.randn(5 * 4 * 5, device=device)
dest = torch.index_select(src, 0, idx, out=out.view(5, 4, 5))
self.assertEqual(dest.shape, (5, 4, 5))
for i in range(idx.size(0)):
self.assertEqual(dest[i], src[idx[i]])
out.fill_(0.123)
self.assertEqual(out, dest.view(-1)) # Must point to the same storage.
# Bool tensor
src = torch.tensor([False, True, False, False], device=device, dtype=torch.bool)
idx = torch.tensor([1], dtype=dtype, device=device)
dest = torch.index_select(src, 0, idx)
self.assertEqual(torch.tensor([True]), dest)
# Complex Tensor
src = torch.randn(3, 4, 5, dtype=torch.complex64, device=device)
idx = torch.tensor([2, 1, 0, 1, 2], dtype=dtype, device=device)
dest = torch.index_select(src, 0, idx)
self.assertEqual(dest.shape, (5, 4, 5))
for i in range(idx.size(0)):
self.assertEqual(dest[i], src[idx[i]])
def test_take_empty(self, device):
for input_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
for indices_shape in [(0,), (0, 1, 2, 0)]:
input = torch.empty(input_shape, device=device)
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
self.assertEqual(indices, torch.take(input, indices), exact_dtype=False)
def test_put_empty(self, device):
for dst_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
for indices_shape in [(0,), (0, 1, 2, 0)]:
for accumulate in [False, True]:
dst = torch.randn(dst_shape, device=device)
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
src = torch.randn(indices_shape, device=device)
self.assertEqual(dst, dst.put_(indices, src, accumulate=accumulate))
@skipCUDAIfRocm
@dtypes(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False, include_half=False) +
torch.testing.get_all_complex_dtypes()))
@dtypesIfCPU(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False, include_half=True) +
torch.testing.get_all_complex_dtypes()))
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes(include_bfloat16=True, include_half=True) +
torch.testing.get_all_complex_dtypes()))
def test_scatter_reduce_operations_to_large_input(self, device, dtype):
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
test_data = [
(torch.zeros(4, 4, device=device, dtype=dtype),
torch.ones(2, 2, device=device, dtype=dtype),
torch.tensor([[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 0]],
device=device, dtype=dtype), "add"),
(torch.tensor([2], device=device, dtype=dtype).repeat(4, 4),
torch.tensor([6], device=device, dtype=dtype).repeat(2, 2),
torch.tensor([[2, 2, 2, 2],
[12, 2, 2, 2],
[12, 2, 2, 2],
[2, 2, 2, 2]], device=device, dtype=dtype), "multiply"),
]
for input, src, result, operation in test_data:
if operation == "multiply" and torch.is_complex(input):
continue
input.scatter_(0, index, src, reduce=operation)
self.assertEqual(input, result)
@skipCUDAIfRocm
@dtypes(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False, include_half=False) +
torch.testing.get_all_complex_dtypes()))
@dtypesIfCPU(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False, include_half=True) +
torch.testing.get_all_complex_dtypes()))
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes(include_bfloat16=True, include_half=True) +
torch.testing.get_all_complex_dtypes()))
def test_scatter_reduce_scalar(self, device, dtype):
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
test_data = [
(torch.zeros(4, 4, device=device, dtype=dtype), 1,
torch.tensor([[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 0]],
device=device, dtype=dtype), "add"),
(torch.tensor([2], device=device, dtype=dtype).repeat(4, 4), 2,
torch.tensor([[2, 2, 2, 2],
[4, 2, 2, 2],
[4, 2, 2, 2],
[2, 2, 2, 2]], device=device, dtype=dtype), "multiply"),
]
for input, src, result, operation in test_data:
if operation == "multiply" and torch.is_complex(input):
continue
input.scatter_(0, index, src, reduce=operation)
self.assertEqual(input, result)
# TODO: remove this after scatter_add_ is deprecated.
def test_scatter_add_non_unique_index(self, device):
height = 2
width = 65536
input = torch.ones(height, width, device=device)
index = torch.zeros(height, width, dtype=torch.long, device=device)
src = torch.ones(height, width, device=device)
input.scatter_add_(0, index, src)
self.assertEqual(input,
torch.tensor([[3], [1]], device=device,
dtype=torch.float32).repeat(1, width))
@skipCUDAIfRocm
@dtypes(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False, include_half=False) +
torch.testing.get_all_complex_dtypes()))
@dtypesIfCPU(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False, include_half=True) +
torch.testing.get_all_complex_dtypes()))
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes(include_bfloat16=True, include_half=True) +
torch.testing.get_all_complex_dtypes()))
def test_scatter_reduce_non_unique_index(self, device, dtype):
height = 2
width = 2
index = torch.zeros(height, width, dtype=torch.long, device=device)
test_data = [
(torch.ones(height, width, device=device, dtype=dtype),
torch.ones(height, width, device=device, dtype=dtype),
torch.tensor([[3], [1]], device=device, dtype=dtype).repeat(1, width), "add"),
(torch.tensor([2], device=device, dtype=dtype).repeat(height, width),
torch.tensor([2], device=device, dtype=dtype).repeat(height, width),
torch.tensor([[8], [2]], device=device,
dtype=dtype).repeat(1, width), "multiply"),
]
for input, src, result, operation in test_data:
if operation == "multiply" and torch.is_complex(input):
continue
input.scatter_(0, index, src, reduce=operation)
self.assertEqual(input, result, msg=f"result: {result} input: {input} method: {str(operation)}")
@skipCUDAIfRocm
@onlyOnCPUAndCUDA
@dtypesIfCUDA(*(torch.testing.get_all_complex_dtypes() +
torch.testing.get_all_int_dtypes()))
@dtypesIfCPU(*(torch.testing.get_all_int_dtypes()))
def test_scatter_reduce_multiply_unsupported_dtypes(self, device, dtype):
height = 2
width = 2
index = torch.zeros(height, width, dtype=torch.long, device=device)
input = torch.ones(height, width, device=device, dtype=dtype)
src = torch.ones(height, width, device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
input.scatter_(0, index, src, reduce="multiply")
def test_scatter_to_large_input(self, device):
input = torch.zeros(4, 4, device=device)
src = torch.ones(2, 2, device=device)
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
input.scatter_(0, index, src)
self.assertEqual(input, torch.tensor([[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 0]], device=device, dtype=torch.float32))
def test_scatter_add_to_large_input(self, device):
input = torch.zeros(4, 4, device=device)
src = torch.ones(2, 2, device=device)
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
input.scatter_add_(0, index, src)
self.assertEqual(input, torch.tensor([[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 0]], device=device, dtype=torch.float32))
def test_scatter_bool(self, device):
x = torch.tensor([[True, True, True], [True, True, True]], device=device)
res = torch.zeros(3, 3, dtype=torch.bool, device=device)
res = res.scatter_(0, torch.tensor([[0, 1, 2], [0, 1, 2]], device=device), x)
self.assertEqual(res, torch.tensor([[True, False, False],
[False, True, False],
[False, False, True]], device=device))
def test_scatter_add_bool(self, device):
x = torch.tensor([[True, True, True, True, True], [True, True, True, True, True]], device=device)
res = torch.zeros(3, 5, dtype=torch.bool, device=device)
res = res.scatter_add_(0, torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]], device=device), x)
self.assertEqual(res, torch.tensor([[True, True, True, True, True],
[False, True, False, True, False],
[True, False, True, False, True]], device=device))
def test_masked_scatter_bool_tensor(self, device):
src = torch.tensor([True, True, True], device=device)
dst = torch.tensor([False, False, False], device=device)
mask = torch.tensor([False, True, False], device=device)
dst.masked_scatter_(mask, src)
self.assertEqual(dst, torch.tensor([False, True, False], device=device))
mask = torch.tensor([True, False, True], device=device)
dst = dst.masked_scatter(mask, src)
self.assertEqual(dst, torch.tensor([True, True, True], device=device))
@dtypes(*torch.testing.get_all_dtypes())
def test_masked_select(self, device, dtype):
if device == 'cpu':
warn = 'masked_select received a mask with dtype torch.uint8,'
else:
warn = 'indexing with dtype torch.uint8 is now deprecated, pl'
for maskType in [torch.uint8, torch.bool]:
num_src = 10
src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dtype, device=device)
mask = torch.randint(2, (num_src,), device=device, dtype=maskType)
with warnings.catch_warnings(record=True) as w:
dst = src.masked_select(mask)
if maskType is torch.uint8:
self.assertEqual(len(w), 1)
self.assertEqual(str(w[0].message)[0:53], str(warn))
dst2 = []
for i in range(num_src):
if mask[i]:
dst2 += [src[i]]
self.assertEqual(dst, torch.tensor(dst2), atol=0, rtol=0)
dst3 = torch.empty(0, device=device, dtype=dtype)
torch.masked_select(src, mask, out=dst3)
self.assertEqual(dst3, torch.tensor(dst2, dtype=dst3.dtype), atol=0, rtol=0)
# Since half on CPU is not supported, need to skip the remaining test cases
if dtype == torch.half and torch.device(device).type == 'cpu':
return
# Ensure that masks are expanded to match tensor properly
a = torch.rand(100, 100, device=device).mul(100).to(dtype)
mask_first_el_each_row = torch.zeros(100, device=device, dtype=torch.bool)
mask_first_el_each_row[0] = True
a_masked = a.masked_select(mask_first_el_each_row)
self.assertEqual(a_masked, a[:, 0])
mask_first_row = torch.zeros(100, 1, device=device, dtype=torch.bool)
mask_first_row[0][0] = True
a_masked = a.masked_select(mask_first_row)
self.assertEqual(a_masked, a[0, :])
# Ensure that tensor is expanded to match mask properly
a = torch.rand(100, device=device).mul(100).to(dtype)
mask_copy_3_times = torch.tensor([[True], [True], [False], [True]], device=device)
a_masked = a.masked_select(mask_copy_3_times)
self.assertEqual(a_masked, a.unsqueeze(0).expand(3, 100).flatten())
def test_masked_select_discontiguous(self, device):
for size in (10, 200):
vals = torch.rand(size, size, device=device)
mask = torch.full((size, size), False, dtype=torch.bool, device=device)
mask[:, ::2] = True
vals_list = (vals, vals.t())
mask_list = (mask, mask.t())
out_dc = torch.empty(size * size, device=device)[::2]
for v, m in product(vals_list, mask_list):
if m.is_contiguous():
expected = v[:, ::2].clone().view(-1)
else:
expected = v[::2].clone().view(-1)
out = torch.masked_select(v, m)
self.assertEqual(out, expected, atol=0, rtol=0)
torch.masked_select(v, m, out=out_dc)
self.assertEqual(out_dc, expected, atol=0, rtol=0)
def test_masked_fill_bool_tensor(self, device):
dst = torch.tensor([True, False, True], device=device)
mask = torch.tensor([False, True, False], device=device)
dst.masked_fill_(mask, True)
self.assertEqual(dst, torch.tensor([True, True, True], device=device))
dst = dst.masked_fill(mask, False)
self.assertEqual(dst, torch.tensor([True, False, True], device=device))
def test_tensor_shape_empty(self, device):
x = torch.randn((0, 1, 3, 0), device=device)
# flatten
self.assertEqual((0,), torch.flatten(x, 0, 3).shape)
self.assertEqual((0, 0), torch.flatten(x, 0, 2).shape)
self.assertEqual((0, 3, 0), torch.flatten(x, 1, 2).shape)
# squeeze, unsqueeze
self.assertEqual((0, 1, 1, 3, 0), torch.unsqueeze(x, 1).shape)
self.assertEqual((0, 3, 0), torch.squeeze(x, 1).shape)
self.assertEqual((0, 3, 0), torch.squeeze(x).shape)
# transpose, t
self.assertEqual((0, 0, 3, 1), torch.transpose(x, 1, 3).shape)
y = torch.randn((5, 0), device=device)
self.assertEqual((0, 5), y.t().shape)
# select
self.assertEqual((0, 1, 0), torch.select(x, 2, 2).shape)
# repeat, permute
self.assertEqual((9, 0, 5, 6, 0), x.repeat(9, 7, 5, 2, 3).shape)
self.assertEqual((3, 0, 0, 1), x.permute(2, 3, 0, 1).shape)
# diagonal, diagflat
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device)).shape)
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device)).shape)
# off the end offsets are valid
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device), offset=1).shape)
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device), offset=1).shape)
# check non-zero sized offsets off the end
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=45252).shape)
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=-45252).shape)
self.assertEqual((0, 0), torch.diagflat(torch.tensor([], device=device)).shape)
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([], device=device), offset=1))
self.assertEqual((0, 0), torch.diagflat(torch.tensor([[]], device=device)).shape)
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([[]], device=device), offset=1))
# stack, split, chunk
self.assertEqual((4, 0, 1, 3, 0), torch.stack((x, x, x, x)).shape)
self.assertEqual([(0, 1, 3, 0)],
[z.shape for z in torch.chunk(x, 1, dim=0)])
self.assertEqual([(0, 1, 3, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=0)])
self.assertEqual([(0, 1, 1, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=2)])
# NOTE: split_with_sizes behaves differently than NumPy in that it
# takes sizes rather than offsets
self.assertEqual([(0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 2, 0)],
[z.shape for z in torch.split(x, (0, 1, 2), dim=2)])
self.assertRaises(RuntimeError, lambda: torch.split(x, 0, dim=1))
# This is strange because the split size is larger than the dim size, but consistent with
# how split handles that case generally (when no 0s are involved).
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 1, dim=0)])
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 0, dim=0)])
# functions that operate over a dimension but don't reduce.
def test_dim_function_empty(self, device):
shape = (0, 1, 2, 0)
x = torch.randn(shape, device=device)
# size stride
self.assertEqual(0, x.size(3))
self.assertEqual(2, x.size(2))
self.assertEqual(2, x.stride(0))
self.assertEqual(1, x.stride(2))
self.assertEqual(x, torch.nn.functional.glu(x, 0))
self.assertEqual((0, 1, 1, 0), torch.nn.functional.glu(x, 2).shape)
# softmax, logsoftmax
self.assertEqual(x, torch.nn.functional.softmax(x, 0))
self.assertEqual(x, torch.nn.functional.softmax(x, 2))
self.assertEqual(x, torch.nn.functional.softmax(x, 3))
self.assertEqual(x, torch.nn.functional.log_softmax(x, 0))
self.assertEqual(x, torch.nn.functional.log_softmax(x, 2))
self.assertEqual(x, torch.nn.functional.log_softmax(x, 3))
# cumsum, cumprod, cummax, cummin
self.assertEqual(shape, torch.cumsum(x, 0).shape)
self.assertEqual(shape, torch.cumsum(x, 2).shape)
self.assertEqual(shape, torch.cumprod(x, 0).shape)
self.assertEqual(shape, torch.cumprod(x, 2).shape)
self.assertEqual(shape, torch.cummax(x, 0)[0].shape)
self.assertEqual(shape, torch.cummax(x, 2)[0].shape)
self.assertEqual(shape, torch.cummin(x, 0)[0].shape)
self.assertEqual(shape, torch.cummin(x, 2)[0].shape)
self.assertEqual(shape, torch.logcumsumexp(x, 0).shape)
self.assertEqual(shape, torch.logcumsumexp(x, 2).shape)
# flip
self.assertEqual(x, x.flip(0))
self.assertEqual(x, x.flip(2))
# roll
self.assertEqual(x, x.roll(0, 1).roll(0, -1))
self.assertEqual(x, x.roll(1, x.size(1)))
self.assertEqual(x, x.roll(1))
self.assertEqual(x, x.roll((1, 1), (3, 1)))
# unbind
self.assertEqual((), x.unbind(0))
self.assertEqual((torch.empty((0, 1, 0), device=device), torch.empty((0, 1, 0), device=device)),
x.unbind(2))
# cross
y = torch.randn((0, 1, 3, 0), device=device)
self.assertEqual(y.shape, torch.cross(y, y).shape)
# renorm
self.assertEqual(shape, torch.renorm(x, 1, 0, 5).shape)
self.assertEqual(shape, torch.renorm(x, 1, 2, 5).shape)
# sort
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=0)])
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=2)])
# topk
self.assertEqual([shape, shape], [z.shape for z in torch.topk(x, 0, dim=0)])
self.assertEqual([(0, 1, 1, 0), (0, 1, 1, 0)], [z.shape for z in torch.topk(x, 1, dim=2)])
y = torch.randn((2, 3, 4), device=device)
self.assertEqual([(2, 3, 0), (2, 3, 0)], [z.shape for z in torch.topk(y, 0)])
# gather
self.assertEqual(shape, torch.gather(x, 0, torch.empty(shape, dtype=torch.int64, device=device)).shape)
self.assertEqual(shape, torch.gather(x, 2, torch.empty(shape, dtype=torch.int64, device=device)).shape)
larger_shape = torch.empty((0, 1, 3, 0), dtype=torch.int64, device=device)
self.assertEqual(larger_shape.shape, torch.gather(x, 2, larger_shape).shape)
smaller_shape = torch.empty((0, 1, 0, 0), dtype=torch.int64, device=device)
self.assertEqual(smaller_shape.shape, torch.gather(x, 2, smaller_shape).shape)
y = torch.randn((2, 3, 4), device=device)
self.assertEqual((0, 3, 4),
torch.gather(y, 0, torch.empty((0, 3, 4), dtype=torch.int64, device=device)).shape)
# scatter, scatter_add
for dim in [0, 2]:
y = torch.randn(shape, device=device)
y_src = torch.randn(shape, device=device)
ind = torch.empty(shape, dtype=torch.int64, device=device)
self.assertEqual(shape, y.scatter_(dim, ind, y_src).shape)
self.assertEqual(shape, y.scatter_add_(dim, ind, y_src).shape)
z = torch.randn((2, 3, 4), device=device)
z_src = torch.randn((2, 3, 4), device=device)
self.assertEqual(z, z.scatter_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
self.assertEqual(z, z.scatter_add_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
# index_fill, index_copy, index_add
c = x.clone()
c_clone = c.clone()
ind_empty = torch.tensor([], dtype=torch.int64, device=device)
ind_01 = torch.tensor([0, 1], dtype=torch.int64, device=device)
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
self.assertEqual(c_clone, c.index_fill_(2, ind_empty, -1))
self.assertEqual(c_clone, c.index_fill_(2, torch.tensor([0, 1], dtype=torch.int64, device=device), -1))
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
self.assertEqual(c_clone, c.index_copy_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
self.assertEqual(c_clone, c.index_copy_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
self.assertEqual(c_clone, c.index_add_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
self.assertEqual(c_clone, c.index_add_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
c = torch.randn((0, 1, 2), device=device)
c_clone = c.clone()
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
# index fill/copy/add non-empty
z = torch.randn((2, 3, 4), device=device)
self.assertEqual(z, z.index_fill_(0, ind_empty, -1))
z = torch.randn((2, 3, 4), device=device)
self.assertEqual(z, z.index_copy_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
z = torch.randn((2, 3, 4), device=device)
self.assertEqual(z, z.index_add_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
# index_select
self.assertEqual(x, x.index_select(0, ind_empty))
self.assertEqual((0, 1, 0, 0), x.index_select(2, ind_empty).shape)
self.assertEqual(x, x.index_select(2, ind_01))
z = torch.randn((2, 3, 4), device=device) # non-empty
self.assertEqual((0, 3, 4), z.index_select(0, ind_empty).shape)
c = torch.randn((0, 1, 2), device=device)
self.assertEqual(c, c.index_select(0, ind_empty))
c = torch.randn((0, 1, 2), device=device)
self.assertEqual(c, c.index_select(0, ind_empty))
def _brute_pdist(self, inp, p=2):
"""Computes the same as torch.pdist using primitives"""
n = inp.shape[-2]
k = n * (n - 1) // 2
if k == 0:
# torch complains about empty indices
return torch.empty(inp.shape[:-2] + (0,), dtype=inp.dtype, device=inp.device)
square = torch.norm(inp[..., None, :] - inp[..., None, :, :], p=p, dim=-1)
unroll = square.view(square.shape[:-2] + (n * n,))
inds = torch.ones(k, dtype=torch.int)
inds[torch.arange(n - 1, 1, -1, dtype=torch.int).cumsum(0)] += torch.arange(2, n, dtype=torch.int)
return unroll[..., inds.cumsum(0)]
def _pdist_single(self, shape, device, p, dtype, trans, grad_check=False):
x = torch.randn(shape, dtype=dtype, device=device)
if trans:
x.transpose_(-2, -1)
if grad_check:
x.requires_grad_()
y = x.detach().clone().requires_grad_()
else:
y = x
actual = torch.pdist(x, p=p)
expected = self._brute_pdist(y, p=p)
self.assertEqual(expected.shape, actual.shape)
self.assertEqual(expected, actual)
if grad_check and expected.size() != torch.Size([0]):
g0 = torch.rand_like(actual)
actual.backward(g0)
expected.backward(g0)
self.assertEqual(x.grad, y.grad)
@slowTest
def test_pdist_norm_forward(self, device):
for shape in [(4, 5), (3, 2), (2, 1), (1500, 1)]:
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
for trans in [False, True]:
for dtype in [torch.float32, torch.float64]:
self._pdist_single(shape, device, p, dtype, trans, grad_check=False)
# do a simplified comparison with big inputs, see:
# https://github.com/pytorch/pytorch/issues/15511
for dtype in [torch.float32, torch.float64]:
self._pdist_single((1000, 2), device, 2, dtype, trans=False, grad_check=False)
@slowTest
def test_pdist_norm_backward(self, device):
for shape in [(4, 5), (3, 2), (2, 1), (1500, 1)]:
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
for trans in [False, True]:
self._pdist_single(shape, device, p, torch.float64, trans, grad_check=True)
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "sandcastle OOM with current tpx gpu/re configuration")
@skipIfRocm
def test_pdist_norm_large(self, device):
# use dim0>=46342 for forward, see:
# https://github.com/pytorch/pytorch/issues/30583
# Compare output using GPU with the CPU implementation, as brute_pdist uses too much memory
if 'cuda' in device:
x = torch.randn(50000, 1, dtype=torch.float32)
expected_cpu = torch.pdist(x, p=2)
actual_gpu = torch.pdist(x.to(device), p=2)
self.assertEqual(expected_cpu, actual_gpu.cpu())
@onlyOnCPUAndCUDA
@dtypesIfCUDA(*set(torch.testing.get_all_math_dtypes('cuda')))
@dtypes(*set(torch.testing.get_all_math_dtypes('cpu')))
def test_addcdiv(self, device, dtype):
def non_zero_rand(size, dtype, device):
if dtype.is_floating_point or dtype.is_complex:
a = torch.rand(size=size, dtype=dtype, device=device)
elif dtype == torch.uint8:
a = torch.randint(1, 5, size=size, dtype=dtype, device=device)
else:
a = torch.randint(-5, 5, size=size, dtype=dtype, device=device)
return a + (a == 0).to(dtype)
def _test_addcdiv():
a = non_zero_rand((2, 2), dtype=dtype, device=device)
b = non_zero_rand((2, 2), dtype=dtype, device=device)
c = non_zero_rand((2, 2), dtype=dtype, device=device)
alpha = _number(0.5, 3, dtype)
expected = a + (alpha * b) / c
actual = torch.addcdiv(a, b, c, value=alpha)
self.assertEqual(expected, actual)
with self.maybeWarnsRegex(
UserWarning, "This overload of addcdiv is deprecated"):
self.assertEqual(actual, torch.addcdiv(a, alpha, b, c))
if not (dtype.is_floating_point or dtype.is_complex):
# Integer division with addcdiv is prohibited
with self.assertRaises(RuntimeError):
_test_addcdiv()
else:
_test_addcdiv()
def test_nullary_op_mem_overlap(self, device):
ops = (
("random_", ()),
("uniform_", ()),
("cauchy_", ()),
("log_normal_", ()),
("exponential_", ()),
("geometric_", (0.5,)),
("normal_", ()),
)
x = torch.rand((1, 3)).expand((3, 3))
for op, args in ops:
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
getattr(x, op)(*args)
@dtypes(torch.double)
def test_ternary_op_mem_overlap(self, device, dtype):
ops = [
("addcmul", True, True, 'cpu'),
("addcmul", True, True, 'cuda'),
("addcdiv", True, True, 'cpu'),
("addcdiv", True, True, 'cuda'),
("lerp", True, True, 'cpu'),
("lerp", True, True, 'cuda')
]
for (fn, has_input_output_mem_overlap_check,
has_internal_mem_overlap_check, dev) in ops:
if dev != device:
continue
out_op = getattr(torch, fn)
inplace_op = getattr(torch.Tensor, fn + '_')
self.check_internal_mem_overlap(
inplace_op, 3, dtype, device,
expected_failure=not has_internal_mem_overlap_check)
self.ternary_check_input_output_mem_overlap(out_op, dev,
expected_failure=not has_input_output_mem_overlap_check)
@dtypes(torch.double)
@onlyOnCPUAndCUDA
def test_copy_mem_overlap(self, device, dtype):
self.check_internal_mem_overlap(
torch.Tensor.copy_, num_inputs=2, dtype=dtype, device=device)
sz = 3
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
self.unary_check_input_output_mem_overlap(
doubles, sz, lambda input, out: out.copy_(input))
@onlyOnCPUAndCUDA
def test_index_add_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((6,))
y = torch.rand((6,), device=device)
ind = torch.tensor([2, 1, 0], device=device)
value = torch.rand((3,), device=device)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
x.index_add_(0, ind, value)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
y.index_add_(0, ind, y[:3])
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
ind.index_add_(0, ind, ind.clone())
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
ind.index_add_(0, ind.clone(), ind)
@onlyOnCPUAndCUDA
def test_index_copy_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((6,))
y = torch.rand((6,), device=device)
ind = torch.tensor([2, 1, 0], device=device)
value = torch.rand((3,), device=device)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
x.index_copy_(0, ind, value)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
y.index_copy_(0, ind, y[:3])
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
ind.index_copy_(0, ind, ind.clone())
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
ind.index_copy_(0, ind.clone(), ind)
@onlyOnCPUAndCUDA
def test_index_fill_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((6,))
y = torch.rand((6,), device=device)
ind = torch.tensor([2, 1, 0], device=device)
value = torch.rand((3,), device=device)
with self.assertWarnsRegex(UserWarning, "index_fill_ on expanded tensors"):
x.index_fill_(0, ind, 1.0)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
ind.index_fill_(0, ind, 0)
@onlyOnCPUAndCUDA
def test_shift_mem_overlap(self, device):
x = torch.rand(3, device=device)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
x[:-1] <<= x[1:]
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
x[:-1] >>= x[1:]
@onlyOnCPUAndCUDA
def test_bernoulli_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((6,))
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
x.bernoulli_()
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
x.bernoulli_(p=0.1)
p = torch.rand(6, device=device)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
x.bernoulli_(p=p)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.bernoulli(torch.rand_like(x), out=x)
@onlyOnCPUAndCUDA
def test_index_put_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((6,))
y = torch.rand((6,), device=device)
ind = torch.tensor([2, 1, 0], device=device)
value = torch.rand((3,), device=device)
with self.assertWarnsRegex(UserWarning, 'expanded tensors'):
x.index_put_((ind,), value)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
y.index_put_((ind,), y[0])
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
ind.index_put_((ind,), ind)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
y.index_put_((ind,), y[:3])
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
ind.index_put_((ind,), ind.clone())
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
ind.index_put_((ind.clone(),), ind)
@onlyOnCPUAndCUDA
def test_masked_fill_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((6,))
mask = torch.tensor([True, False, True, True, False, False], device=device)
with self.assertWarnsRegex(UserWarning, 'expanded tensors'):
x.masked_fill_(mask, 0.)
fill_val = torch.tensor(0., device=device)
with self.assertWarnsRegex(UserWarning, 'expanded tensors'):
x.masked_fill_(mask, fill_val)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
mask[1:].masked_fill_(mask[:-1], False)
@onlyOnCPUAndCUDA
def test_masked_select_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((3,))
y = torch.rand((6,), device=device)
mask = torch.tensor([True, False, True, True, False, False], device=device)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.masked_select(y, mask, out=x)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.masked_select(y, mask, out=y)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.masked_select(mask.clone(), mask, out=mask)
@onlyOnCPUAndCUDA
def test_masked_scatter_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((6,))
src = torch.rand((3,), device=device)
mask = torch.tensor([True, False, True, True, False, False], device=device)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
x.masked_scatter_(mask, src)
@onlyOnCPUAndCUDA
def test_index_select_mem_overlap(self, device):
x = torch.rand((1, 6), device=device).expand((2, 6))
y = torch.rand((3, 6), device=device)
ind = torch.tensor([0, 1], dtype=torch.int64, device=device)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.index_select(y, 1, ind, out=x)
@onlyOnCPUAndCUDA
def test_scatter_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((6,))
src = torch.rand((3,), device=device)
ind = torch.tensor([2, 1, 0], device=device, dtype=torch.int64)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
x.scatter_(0, ind, src)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
src.scatter_(0, ind, src)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
ind.scatter_(0, ind, ind.clone())
@onlyOnCPUAndCUDA
def test_gather_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((3,))
src = torch.rand((6,), device=device)
ind = torch.tensor([2, 1, 0], device=device, dtype=torch.int64)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.gather(src, 0, ind, out=x)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.gather(src, 0, ind, out=src)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.gather(ind.clone(), 0, ind[1:], out=ind[:1])
@onlyOnCPUAndCUDA
def test_take_mem_overlap(self, device):
x = torch.rand((1,), device=device).expand((3,))
src = torch.rand((6,), device=device)
ind = torch.tensor([2, 1, 0], device=device, dtype=torch.int64)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.take(src, ind, out=x)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.take(src, ind, out=src)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.take(ind.clone(), ind[1:], out=ind[:-1])
@onlyCUDA
def test_multinomial_device_constrain(self, device):
x = torch.empty(0, device="cpu")
y = torch.empty(0, device=device)
self.assertRaisesRegex(
RuntimeError, "multinomial arguments must have the same device",
lambda: torch.multinomial(x, 2, out=y))
@deviceCountAtLeast(2)
@onlyCUDA
def test_multinomial_gpu_device_constrain(self, devices):
x = torch.empty(0, device=devices[0])
y = torch.empty(0, device=devices[1])
self.assertRaisesRegex(
RuntimeError, "multinomial arguments must have the same device",
lambda: torch.multinomial(x, 2, out=y))
@deviceCountAtLeast(2)
@onlyCUDA
def test_device_guard(self, devices):
# verify that all operators with `device_guard: False` behave properly with multiple devices.
# TODO: if we had operator introspection we could figure out this set of operators automatically...
x = torch.randn((1, 2, 3), device=devices[1])
y = torch.zeros((1, 3, 2), device=devices[1])
scalar = torch.tensor(5, device=devices[1])
# property ops
torch.cudnn_is_acceptable(x)
x.is_distributed()
x.is_floating_point()
x.is_complex()
x.is_same_size(y)
x.is_signed()
x.size(0)
x.stride(0)
x.numel()
x.is_set_to(y)
x.data_ptr()
scalar.is_nonzero()
# sparse property ops
y[0][1] = 5
y_sparse = y.to_sparse()
y_sparse.sparse_dim()
y_sparse._dimI()
y_sparse.dense_dim()
y_sparse._dimV()
y_sparse._nnz()
y_sparse.is_coalesced()
y_sparse._indices()
y_sparse._values()
y_sparse.indices()
y_sparse.values()
# in-place ops
def inplace():
return torch.randn((1, 2, 3), device=devices[1])
inplace().as_strided_(y.size(), y.stride())
inplace().resize_(y.size())
inplace().squeeze_()
inplace().squeeze_(0)
inplace().unsqueeze_(2)
inplace().transpose_(1, 2)
inplace().squeeze_().t_()
inplace().set_(x.storage())
inplace().set_(x.storage(), x.storage_offset(), x.size(), x.stride())
inplace().set_(x)
inplace().set_()
y_sparse._coalesced_(True)
# shape modification
x.as_strided(y.size(), y.stride())
x.expand((5, 2, 3))
x.expand_as(x)
x.sum_to_size((1,))
torch.broadcast_tensors(x , x)
x.reshape((1, 3, 2))
x.reshape_as(y)
x.squeeze()
x.squeeze(0)
x.squeeze().t()
x.transpose(1, 2)
x.unsqueeze(2)
x.view((1, 3, 2))
x.view_as(y)
# chunk, split, etc.
x.chunk(2, dim=1)
x.split(1, dim=2)
x.split_with_sizes([1, 2], dim=2)
x.unfold(dimension=2, size=1, step=1)
x.narrow(1, 1, 1)
x.select(1, 1)
torch.isnan(x)
torch.empty((1, 3, 2), out=y)
torch.empty_like(x)
torch.empty_like(x, dtype=torch.int64)
# to
x.to(x)
x.to(y)
x.to(x, copy=True)
def test_is_signed(self, device):
self.assertEqual(torch.IntTensor(5).to(device).is_signed(), True)
self.assertEqual(torch.ByteTensor(5).to(device).is_signed(), False)
self.assertEqual(torch.CharTensor(5).to(device).is_signed(), True)
self.assertEqual(torch.FloatTensor(5).to(device).is_signed(), True)
self.assertEqual(torch.HalfTensor(10).to(device).is_signed(), True)
# Note - reports a leak of 512 bytes on CUDA device 1
@deviceCountAtLeast(2)
@skipCUDAMemoryLeakCheckIf(True)
@onlyCUDA
def test_tensor_set_errors_multigpu(self, devices):
f_cuda0 = torch.randn((2, 3), dtype=torch.float32, device=devices[0])
f_cuda1 = torch.randn((2, 3), dtype=torch.float32, device=devices[1])
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1.storage()))
self.assertRaises(RuntimeError,
lambda: f_cuda0.set_(f_cuda1.storage(), 0, f_cuda1.size(), f_cuda1.stride()))
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1))
@onlyCUDA
def test_half_tensor(self, device):
x = torch.randn(5, 5).half()
self.assertEqual(x.to(device), x)
xc = x.to(device)
with tempfile.NamedTemporaryFile() as f:
torch.save(xc, f)
f.seek(0)
xc2 = torch.load(f)
self.assertIsInstance(xc2, type(xc))
self.assertEqual(xc.float(), xc2.float())
@onlyCUDA
@deviceCountAtLeast(1) # Note: Tests works with one but prefers more devices
def test_serialization(self, devices):
def _test_serialization(filecontext_lambda):
t0 = torch.cuda.FloatTensor(5).fill_(1)
with torch.cuda.device(devices[-1]):
tn = torch.cuda.FloatTensor(3).fill_(2)
torch.cuda.set_device(devices[0])
b = (t0, tn)
with filecontext_lambda() as f:
torch.save(b, f)
f.seek(0)
c = torch.load(f)
self.assertEqual(b, c, atol=0, rtol=0)
u0, un = c
self.assertEqual(str(u0.device), devices[0])
self.assertEqual(str(un.device), devices[-1])
_test_serialization(tempfile.NamedTemporaryFile)
_test_serialization(BytesIOContext)
def test_memory_format_preserved_after_permute(self, device):
x = torch.randn(4, 3, 8, 8, device=device)
nhwc = x.contiguous(memory_format=torch.channels_last)
y = nhwc.permute(0, 1, 3, 2).permute(0, 1, 3, 2)
self.assertTrue(y.is_contiguous(memory_format=torch.channels_last))
x = torch.randn(4, 3, 8, 8, 8, device=device)
ndhwc = x.contiguous(memory_format=torch.channels_last_3d)
y = ndhwc.permute(0, 1, 4, 3, 2).permute(0, 1, 4, 3, 2)
self.assertTrue(y.is_contiguous(memory_format=torch.channels_last_3d))
def test_memory_format_propagation_rules(self, device):
contiguous = torch.rand(10, 3, 5, 5, device=device)
cl = torch.rand(10, 3, 5, 5, device=device).contiguous(memory_format=torch.channels_last)
ambiguous = torch.rand(10, 3, 1, 1, device=device).contiguous(memory_format=torch.channels_last)
self.assertTrue(ambiguous.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(ambiguous.is_contiguous(memory_format=torch.contiguous_format))
bias = torch.rand(1, 1, 1, 1, device=device).contiguous(memory_format=torch.channels_last)
def _test_propagation_rules(self, contiguous, cl, ambiguous, bias):
options = ((ambiguous, contiguous, torch.contiguous_format),
(ambiguous, cl, torch.channels_last),
(contiguous, ambiguous, torch.contiguous_format),
(contiguous, cl, torch.contiguous_format),
(cl, ambiguous, torch.channels_last),
(cl, contiguous, torch.channels_last),
(bias, cl, torch.channels_last),
(cl, bias, torch.channels_last),)
for a, b, mf in options:
result = a + b
self.assertTrue(result.is_contiguous(memory_format=mf))
_test_propagation_rules(self, contiguous, cl, ambiguous, bias)
cl = cl.to(memory_format=torch.channels_last)
ambiguous = ambiguous.to(memory_format=torch.channels_last)
bias = bias.to(memory_format=torch.channels_last)
_test_propagation_rules(self, contiguous, cl, ambiguous, bias)
# test cases when strides matter in ambiguous tensors
for mf in (torch.channels_last, torch.contiguous_format):
ambiguous = torch.rand(10, 3, 1, 1, device=device).to(memory_format=mf)
bias = torch.rand(3, 1, 1, device=device)
result = ambiguous + bias
self.assertEqual(ambiguous.stride(), result.stride())
result = bias + ambiguous
self.assertEqual(ambiguous.stride(), result.stride())
result = ambiguous * 5
self.assertEqual(ambiguous.stride(), result.stride())
def test_memory_format_empty_like(self, device):
def test_helper(x, memory_format):
xc = x.contiguous(memory_format=memory_format)
like = torch.empty_like(xc, memory_format=torch.preserve_format)
self.assertFalse(like.is_contiguous())
self.assertTrue(like.is_contiguous(memory_format=memory_format))
like_x = torch.empty_like(x, memory_format=torch.preserve_format)
self.assertTrue(like_x.is_contiguous())
self.assertFalse(like_x.is_contiguous(memory_format=memory_format))
like = torch.empty_like(x, memory_format=memory_format)
self.assertFalse(like.is_contiguous())
self.assertTrue(like.is_contiguous(memory_format=memory_format))
like = torch.empty_like(xc, memory_format=torch.contiguous_format)
self.assertTrue(like.is_contiguous())
self.assertFalse(like.is_contiguous(memory_format=memory_format))
like = torch.empty_like(xc)
self.assertFalse(like.is_contiguous())
self.assertTrue(like.is_contiguous(memory_format=memory_format))
sparse = x.to_sparse()
with self.assertRaises(RuntimeError):
z = torch.empty_like(sparse, memory_format=torch.preserve_format)
test_helper(torch.randn(4, 3, 8, 8, device=device), torch.channels_last)
test_helper(torch.randn(4, 3, 8, 8, 8, device=device), torch.channels_last_3d)
def test_memory_format_consistency(self, device):
x = torch.randn(10, 3, 1, 1, device=device)
x_rep = x.as_strided(x.size(), x.stride())
self.assertEqual(x.size(), x_rep.size())
self.assertEqual(x.stride(), x_rep.stride())
self.assertEqual(x.is_contiguous(), x_rep.is_contiguous())
self.assertEqual(x.is_contiguous(memory_format=torch.channels_last), x_rep.is_contiguous(memory_format=torch.channels_last))
self.assertEqual(
x.is_contiguous(memory_format=torch.channels_last_3d), x_rep.is_contiguous(memory_format=torch.channels_last_3d))
def test_memory_format_operators(self, device):
def _chunk_op(x, y):
x1, x2 = x.chunk(2, dim=1)
return x1 + x2
def _unsqueeze_op_add(x, y):
return x[0].unsqueeze(0) + 3
def _unsqueeze_op_clone(x, y):
return x[0].unsqueeze(0).clone()
def _test_helper(x, y, bias, memory_format):
return_contig_fns = [
lambda x, y: y + x,
lambda x, y: y * x,
lambda x, y: y.addcdiv(x, y, value=2),
lambda x, y: y.addcmul(x, y, value=2),
]
bias_fns = [
lambda x, b: x + b,
lambda x, b: b + x,
]
fns = [
lambda x, y: x.clone(),
lambda x, y: x + 3,
lambda x, y: 3 * x,
lambda x, y: x + y,
lambda x, y: x * y,
lambda x, y: abs(x),
lambda x, y: x.abs(),
lambda x, y: x.abs_(),
lambda x, y: x.acos(),
lambda x, y: x.acos_(),
lambda x, y: x.add(y, alpha=3),
lambda x, y: x.add_(y, alpha=3),
lambda x, y: x.addcdiv(y, y, value=2),
lambda x, y: x.addcdiv_(y, y, value=2),
lambda x, y: x.addcmul(y, y, value=2),
lambda x, y: x.addcmul_(y, y, value=2),
lambda x, y: x.acosh(),
lambda x, y: x.acosh_(),
lambda x, y: x.asinh(),
lambda x, y: x.asinh_(),
lambda x, y: x.atanh(),
lambda x, y: x.atanh_(),
lambda x, y: x.asin(),
lambda x, y: x.asin_(),
lambda x, y: x.atan(),
lambda x, y: x.atan2(y),
lambda x, y: x.atan2_(y),
lambda x, y: x.ceil(),
lambda x, y: x.ceil_(),
lambda x, y: x.clamp(-1, 1),
lambda x, y: x.cos(),
lambda x, y: x.cosh(),
lambda x, y: x.div(0.5),
lambda x, y: x.div_(0.5),
lambda x, y: x.div(y),
lambda x, y: x.div_(y),
lambda x, y: x.digamma(),
lambda x, y: x.digamma_(),
lambda x, y: x.erf(),
lambda x, y: x.erfc(),
lambda x, y: x.erfinv(),
lambda x, y: x.erfinv_(),
lambda x, y: x.exp(),
lambda x, y: x.expm1(),
lambda x, y: x.expm1_(),
lambda x, y: x.floor(),
lambda x, y: x.floor_(),
lambda x, y: x.fmod(2),
lambda x, y: x.frac(),
lambda x, y: x.hypot(y),
lambda x, y: x.hypot_(y),
lambda x, y: x.i0(),
lambda x, y: x.i0_(),
lambda x, y: x.lerp(y, 0.5),
lambda x, y: x.log(),
lambda x, y: x.log_(),
lambda x, y: x.log10(),
lambda x, y: x.log10_(),
lambda x, y: x.log1p(),
lambda x, y: x.log1p_(),
lambda x, y: x.log2(),
lambda x, y: x.log2_(),
lambda x, y: x.mul(3),
lambda x, y: x.mul_(3),
lambda x, y: x.neg(),
lambda x, y: x.neg_(),
lambda x, y: x.pow(3),
lambda x, y: x.pow_(3),
lambda x, y: x.pow(0.0),
lambda x, y: x.pow(1.0),
lambda x, y: x.reciprocal(),
lambda x, y: x.remainder(2),
lambda x, y: x.round(),
lambda x, y: x.round_(),
lambda x, y: x.rsqrt(),
lambda x, y: x.rsqrt_(),
lambda x, y: x.sigmoid(),
lambda x, y: x.sigmoid_(),
lambda x, y: x.logit(),
lambda x, y: x.logit_(),
lambda x, y: x.logit(1e-6),
lambda x, y: x.logit_(1e-6),
lambda x, y: x.sign(),
lambda x, y: x.sign_(),
lambda x, y: x.sgn(),
lambda x, y: x.sgn_(),
lambda x, y: x.sin(),
lambda x, y: x.sin_(),
lambda x, y: x.sinh(),
lambda x, y: x.sinh_(),
lambda x, y: x.sqrt(),
lambda x, y: x.sqrt_(),
lambda x, y: x.tan(),
lambda x, y: x.tanh(),
lambda x, y: x.trunc(),
lambda x, y: x.trunc_(),
_chunk_op,
_unsqueeze_op_add,
_unsqueeze_op_clone,
]
for fn in fns:
x_c = x.contiguous()
y_c = y.contiguous()
result_c = fn(x_c, y_c)
result = fn(x, y)
self.assertEqual(result, result_c)
self.assertTrue(
result.is_contiguous(memory_format=memory_format),
"result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), memory_format))
for fn in bias_fns:
x_c = x.contiguous()
b_c = bias.contiguous()
result_c = fn(x_c, b_c)
result = fn(x, bias)
self.assertEqual(result, result_c)
self.assertTrue(
result.is_contiguous(memory_format=memory_format),
"result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), memory_format))
for fn in return_contig_fns:
x_c = x.contiguous()
y_c = y.contiguous()
result_c = fn(x_c, y_c)
result = fn(x, y)
self.assertEqual(result, result_c)
self.assertTrue(
result.is_contiguous(memory_format=torch.contiguous_format),
"result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), torch.contiguous_format))
_test_helper(
torch.randn((4, 3, 8, 8), device=device).contiguous(memory_format=torch.channels_last),
abs(torch.randn((4, 3, 8, 8), device=device)) + 1,
torch.randn((1, 3, 1, 1), device=device).contiguous(memory_format=torch.channels_last),
torch.channels_last)
_test_helper(
torch.randn((4, 3, 8, 8, 8), device=device).contiguous(memory_format=torch.channels_last_3d),
abs(torch.randn((4, 3, 8, 8, 8), device=device)) + 1,
torch.randn((1, 3, 1, 1, 1), device=device).contiguous(memory_format=torch.channels_last_3d),
torch.channels_last_3d)
def test_strides_propagation(self, device):
def _test_helper(x, op, unary=False):
def compare_strides(s1, s2, div):
sdiv = [s // div for s in s1]
self.assertEqual(sdiv, s2)
dim = x.dim()
# we produce memory dense outputs, so when input is strided on the last dimension
# we need to divide by that dimension stride to compare input and result strides
div = x.stride(-1)
for p in permutations(range(dim)):
xp = x.permute(p)
if not unary:
y = torch.randn(xp.size(-1), device=x.device, dtype=x.dtype)
for inputs in ((xp, xp), (xp, y), (y, xp)):
res = op(*inputs)
compare_strides(xp.stride(), res.stride(), div)
self.assertEqual(xp.size(), res.size())
out = torch.empty(0, device=xp.device, dtype=res.dtype)
res = op(*inputs, out=out)
compare_strides(xp.stride(), res.stride(), div)
self.assertEqual(xp.size(), res.size())
else:
res = op(xp)
compare_strides(xp.stride(), res.stride(), div)
self.assertEqual(xp.size(), res.size())
out = torch.empty(0, device=xp.device, dtype=res.dtype)
res = op(xp, out=out)
compare_strides(xp.stride(), res.stride(), div)
self.assertEqual(xp.size(), res.size())
# torch.eq by default calls TensorIterator with defined output, torch.add with undefined
binary_ops = (torch.eq, torch.add)
unary_ops = (torch.exp,)
# memory dense, sliced and ambiguous sliced (ambiguous dense loses permutation information)
xs = (torch.randn(2, 3, 4, device=device), torch.randn(2, 3, 8, device=device)[:, :, ::2],
torch.randn(1, 1, 4, 12, device=device)[:, :, :, ::2])
for op in binary_ops:
for x in xs:
_test_helper(x, op)
for op in unary_ops:
for x in xs:
_test_helper(x, op, unary=True)
def test_dlpack_conversion(self, device):
x = torch.randn(1, 2, 3, 4, device=device, dtype=torch.float)
z = from_dlpack(to_dlpack(x))
self.assertEqual(z, x)
@onlyCUDA
@unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property")
def test_pin_memory_from_constructor(self, device):
def _get_like(t, **kwargs):
return [
torch.rand_like(t, **kwargs),
torch.randn_like(t, **kwargs),
torch.empty_like(t, **kwargs),
torch.full_like(t, 4, **kwargs),
torch.zeros_like(t, **kwargs),
torch.ones_like(t, **kwargs),
]
def _get_tensors(**kwargs):
return [
torch.tensor([10, 11], **kwargs),
torch.randn(3, 5, **kwargs),
torch.rand(3, **kwargs),
# torch.randint(3, 5, **kwargs), // unsupported
torch.zeros(3, **kwargs),
torch.randperm(3, **kwargs),
torch.empty(6, **kwargs),
torch.ones(6, **kwargs),
torch.eye(6, **kwargs),
torch.arange(3, 5, **kwargs)]
pinned_tensors = _get_tensors(pin_memory=True) + _get_like(torch.empty(5, dtype=torch.float64), pin_memory=True)
for x in pinned_tensors:
self.assertTrue(x.is_pinned())
tensors = _get_tensors() + _get_like(torch.empty(5, dtype=torch.float64, pin_memory=True))
for x in tensors:
self.assertFalse(x.is_pinned())
def test_storage_device(self, device):
x = torch.tensor([], device=device)
self.assertEqual(x.dtype, x.storage().dtype)
@deviceCountAtLeast(2)
@onlyCUDA
def test_storage_multigpu(self, devices):
for device in devices:
x = torch.tensor([], device=device)
self.assertEqual(x.dtype, x.storage().dtype)
@dtypes(torch.float, torch.double, torch.half)
def test_multinomial(self, device, dtype):
def make_prob_dist(shape, is_contiguous):
if is_contiguous:
if dtype == torch.half:
return torch.zeros(shape, device=device).uniform_().to(dtype=torch.half)
return torch.zeros(shape, device=device, dtype=dtype).uniform_()
elif len(shape) == 1:
if dtype == torch.half:
return torch.zeros((shape + [5]), device=device).uniform_().to(dtype=torch.half)[:, 2]
return torch.zeros((shape + [5]), device=device, dtype=dtype).uniform_()[:, 2]
else:
# num dim = 2
new_shape = [2, shape[1], 7, 1, shape[0], 1, 10]
if dtype == torch.half:
prob_dist = torch.zeros(new_shape, device=device).uniform_().to(dtype=torch.half)
else:
prob_dist = torch.zeros(new_shape, device=device, dtype=dtype).uniform_()
prob_dist = prob_dist.transpose(1, 4)
prob_dist = prob_dist[1, :, 5, 0, :, 0, 4]
assert not prob_dist.is_contiguous() # sanity check
return prob_dist
for is_contiguous in (True, False):
# with replacement
n_row = 3
for n_col in range(4, 5 + 1):
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
# indices that shouldn't be sampled (<0 means none)
zero_prob_indices = torch.LongTensor(n_row).random_(-2, n_col).tolist()
for i, j in enumerate(zero_prob_indices):
if j >= 0:
prob_dist[i, j] = 0
n_sample = n_col * 3
sample_indices = torch.multinomial(prob_dist, n_sample, True)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for i in range(n_row):
zero_prob_idx = zero_prob_indices[i]
if zero_prob_idx < 0:
continue
for j in range(n_sample):
self.assertNotEqual(sample_indices[i, j], zero_prob_idx,
msg="sampled an index with zero probability")
# without replacement
n_row = 3
for n_col in range(2, 10 + 1, 2):
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
# indices that shouldn't be sampled (<0 means none)
zero_prob_indices = torch.LongTensor(n_row).random_(-1, n_col).tolist()
for i, j in enumerate(zero_prob_indices):
if j >= 0:
prob_dist[i, j] = 0
n_sample = max(1, n_col - 2)
sample_indices = torch.multinomial(prob_dist, n_sample, False)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for i in range(n_row):
row_samples = {}
zero_prob_idx = zero_prob_indices[i]
for j in range(n_sample):
sample_idx = sample_indices[i, j]
if zero_prob_idx >= 0:
self.assertNotEqual(sample_idx, zero_prob_idx,
msg="sampled an index with zero probability")
self.assertNotIn(sample_idx, row_samples, "sampled an index twice")
row_samples[sample_idx] = True
# vector
n_col = 4
prob_dist = make_prob_dist([n_col], is_contiguous).fill_(1)
zero_prob_idx = 1 # index that shouldn't be sampled
prob_dist[zero_prob_idx] = 0
n_sample = 20
sample_indices = torch.multinomial(prob_dist, n_sample, True)
for sample_index in sample_indices:
self.assertNotEqual(sample_index, zero_prob_idx, msg="sampled an index with zero probability")
s_dim = sample_indices.dim()
self.assertEqual(sample_indices.dim(), 1, msg="wrong number of dimensions")
self.assertEqual(prob_dist.dim(), 1, msg="wrong number of prob_dist dimensions")
self.assertEqual(sample_indices.size(0), n_sample, msg="wrong number of samples")
@slowTest
@dtypes(torch.float)
def test_multinomial_rng_state_advance(self, device, dtype):
corpus_size = 100000
freqs = torch.ones(corpus_size, dtype=torch.float, device=device)
n_sample = 100
samples1 = torch.multinomial(freqs, n_sample, replacement=True)
samples2 = torch.multinomial(freqs, n_sample, replacement=True)
samples = torch.cat([samples1, samples2])
# expect no more than 1 repeating elements generated in 2 attempts
# the probability of at least element being repeated is surprisingly large, 18%
self.assertLessEqual(2 * n_sample - samples.unique().size(0), 2)
samples1 = torch.multinomial(freqs, n_sample, replacement=False)
samples2 = torch.multinomial(freqs, n_sample, replacement=False)
samples = torch.cat([samples1, samples2])
# expect no more than 1 repeating elements generated in 2 attempts
self.assertLessEqual(2 * n_sample - samples.unique().size(0), 1)
def _test_memory_format_transformations(self, device, input_generator_fn, transformation_fn,
memory_format, compare_data=True, default_is_preserve=False):
assert(memory_format == torch.channels_last or memory_format == torch.channels_last_3d)
# xc is a channels last tensor
xc = input_generator_fn(device)
# xc is not memory dense, but looks like channels last
if memory_format == torch.channels_last:
xc = xc[..., ::2, ::2]
else:
xc = xc[..., ::2, ::2, ::2]
clone = transformation_fn(xc, memory_format=torch.preserve_format)
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
self.assertFalse(xc.is_contiguous())
self.assertFalse(xc.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc, memory_format=torch.contiguous_format)
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc)
if default_is_preserve:
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
else:
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
x = torch.randn((3, 4, 5, 6, 7, 8, 9), device=device)
for _ in range(10):
permutation = list(range(len(x.shape)))
random.shuffle(permutation)
x = x.permute(permutation)
self.assertEqual(x.stride(), transformation_fn(x, memory_format=torch.preserve_format).stride())
def test_memory_format_to(self, device):
def get_generator(memory_format, shape):
def input_generator_fn(device):
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
return input_generator_fn
def transformation_fn(tensor, **kwargs):
return tensor.to(dtype=torch.float64, **kwargs)
formats_shapes = (
(torch.channels_last, (4, 3, 8, 8)),
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
for mf, shape in formats_shapes:
self._test_memory_format_transformations(
device, get_generator(mf, shape), transformation_fn, mf, default_is_preserve=True)
def test_memory_format_type(self, device):
def get_generator(memory_format, shape):
def input_generator_fn(device):
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
return input_generator_fn
def transformation_fn(tensor, **kwargs):
return tensor.to(torch.float64, **kwargs)
formats_shapes = (
(torch.channels_last, (4, 3, 8, 8)),
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
for mf, shape in formats_shapes:
self._test_memory_format_transformations(
device, get_generator(mf, shape), transformation_fn, mf, default_is_preserve=True)
def test_memory_format_clone(self, device):
def get_generator(memory_format, shape):
def input_generator_fn(device):
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
return input_generator_fn
def transformation_fn(tensor, **kwargs):
return tensor.clone(**kwargs)
formats_shapes = (
(torch.channels_last, (4, 3, 8, 8)),
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
for mf, shape in formats_shapes:
self._test_memory_format_transformations(
device, get_generator(mf, shape), transformation_fn, mf, True, default_is_preserve=True)
def test_memory_format_factory_like_functions_preserve(self, device):
def get_generator(memory_format, shape):
def input_generator_fn(device):
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
return input_generator_fn
transformation_fns = [
lambda t, **kwargs: torch.zeros_like(t, **kwargs),
lambda t, **kwargs: torch.ones_like(t, **kwargs),
lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs),
lambda t, **kwargs: torch.randint_like(t, 100, **kwargs),
lambda t, **kwargs: torch.randn_like(t, **kwargs),
lambda t, **kwargs: torch.rand_like(t, **kwargs),
lambda t, **kwargs: torch.full_like(t, 7, **kwargs),
lambda t, **kwargs: torch.empty_like(t, **kwargs)]
formats_shapes = (
(torch.channels_last, (4, 3, 8, 8)),
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
for mf, shape, in formats_shapes:
for transformation_fn in transformation_fns:
self._test_memory_format_transformations(
device, get_generator(mf, shape), transformation_fn, mf, compare_data=False, default_is_preserve=True)
def test_memory_format_type_shortcuts(self, device):
def get_generator(memory_format, shape, dtype):
def input_generator_fn(device):
return torch.randn(shape, device=device, dtype=dtype).clamp(0, 1) \
.round().contiguous(memory_format=memory_format)
return input_generator_fn
def get_fn(fn_name):
def transformation_fn(tensor, **kwargs):
fn = getattr(tensor, fn_name)
return fn(**kwargs)
return transformation_fn
shortcuts = ['byte', 'char', 'double', 'bool', 'half', 'int', 'long', 'short']
if device == 'cpu':
shortcuts += ['bfloat16']
formats_shapes = (
(torch.channels_last, (4, 3, 8, 8)),
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
for mf, shape in formats_shapes:
for fn_name in shortcuts:
self._test_memory_format_transformations(
device, get_generator(mf, shape, torch.float32), get_fn(fn_name), mf, default_is_preserve=True)
# Test 'float' separately to avoid float->float no-op.
for mf, shape in formats_shapes:
self._test_memory_format_transformations(
device, get_generator(mf, shape, torch.float64), get_fn('float'), mf, default_is_preserve=True)
@onlyCUDA
def test_memory_format_cpu_and_cuda_ops(self, device):
def get_generator(memory_format, shape):
def input_generator_fn(device):
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
return input_generator_fn
def transformation_cpu_fn(tensor, **kwargs):
return tensor.cpu(**kwargs)
def transformation_cuda_fn(tensor, **kwargs):
return tensor.cuda(**kwargs)
formats_shapes = (
(torch.channels_last, (4, 3, 8, 8)),
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
for mf, shape in formats_shapes:
self._test_memory_format_transformations(
'cuda', get_generator(mf, shape), transformation_cpu_fn, mf, default_is_preserve=True)
self._test_memory_format_transformations(
'cpu', get_generator(mf, shape), transformation_cuda_fn, mf, default_is_preserve=True)
@dtypes(torch.complex64, torch.complex128)
def test_complex_unsupported(self, device, dtype):
t = torch.tensor((1 + 1j), device=device, dtype=dtype)
# Note: this is consistent with NumPy
with self.assertRaises(RuntimeError):
torch.floor(t)
with self.assertRaises(RuntimeError):
torch.ceil(t)
with self.assertRaises(RuntimeError):
torch.trunc(t)
# Tests min and max variants with complex inputs
# Note: whether PyTorch should support min and max on complex
# tensors is an open question.
# See https://github.com/pytorch/pytorch/issues/36374
with self.assertRaises(RuntimeError):
torch.min(t)
with self.assertRaises(RuntimeError):
t.min()
with self.assertRaises(RuntimeError):
torch.min(t, dim=0)
with self.assertRaises(RuntimeError):
torch.min(t, t)
with self.assertRaises(RuntimeError):
torch.min(t, t, out=t)
with self.assertRaises(RuntimeError):
torch.max(t)
with self.assertRaises(RuntimeError):
t.max()
with self.assertRaises(RuntimeError):
torch.max(t, dim=0)
with self.assertRaises(RuntimeError):
torch.max(t, t)
with self.assertRaises(RuntimeError):
torch.max(t, t, out=t)
with self.assertRaises(RuntimeError):
torch.amin(t)
with self.assertRaises(RuntimeError):
t.amin()
with self.assertRaises(RuntimeError):
torch.amin(t, dim=0)
with self.assertRaises(RuntimeError):
torch.amax(t)
with self.assertRaises(RuntimeError):
t.amax()
with self.assertRaises(RuntimeError):
torch.amax(t, dim=0)
# Tests clamp variants with complex inputs
# Note: whether PyTorch should support clamp on complex
# tensors is an open question.
# See https://github.com/pytorch/pytorch/issues/33568
min_val = 1 + 1j
max_val = 4 + 4j
out = torch.empty((0,), device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
torch.clamp(t, min=min_val)
with self.assertRaises(RuntimeError):
torch.clamp(t, max=max_val)
with self.assertRaises(RuntimeError):
torch.clamp(t, min_val, max_val)
with self.assertRaises(RuntimeError):
torch.clamp(t, min=min_val, out=out)
with self.assertRaises(RuntimeError):
torch.clamp(t, max=max_val, out=out)
with self.assertRaises(RuntimeError):
torch.clamp(t, min_val, max_val, out=out)
def test_pickle_gradscaler(self, device):
# This test is not in test_cuda.py because it should pass in 3 cases:
# 1. cuda is not available.
# 2. cuda is available but device is not cuda.
# 3. cuda is available and device is cuda.
# In case 1, a and b disable themselves on construction and shouldn't try to pickle workhorse attributes.
# In case 2, a and b are enabled. Workhorse attributes participate in pickling, but none are lazy-inited
# to cuda Tensors, because I don't want to do cuda things if device is not cuda.
# In case 3, a and b are enabled and we may also try lazy-initing _scale to a cuda tensor.
device = torch.device(device)
try_lazy_inits = (True, False) if device.type == "cuda" else (False,)
for lazy_init_scale in try_lazy_inits:
a = torch.cuda.amp.GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2)
self.assertTrue(a.is_enabled() if torch.cuda.is_available() else not a.is_enabled())
if lazy_init_scale:
# Dummy a.scale() call lazy-inits a._scale Tensor.
a.scale(torch.tensor([4.0], dtype=torch.float32, device=device))
self.assertTrue(isinstance(a._scale, torch.cuda.FloatTensor))
# The following three lines should work whether or not cuda is available.
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertEqual(b.is_enabled(), a.is_enabled())
if a.is_enabled():
self.assertEqual(b.get_scale(), 3.)
self.assertEqual(b.get_growth_factor(), 4.)
self.assertEqual(b.get_backoff_factor(), .5)
self.assertEqual(b.get_growth_interval(), 2)
self.assertEqual(b._init_growth_tracker, 0)
# supplies a dummy key to test the defaultdict's default_factory
self.assertEqual(b._per_optimizer_states["fdsa"],
torch.cuda.amp.grad_scaler._refresh_per_optimizer_state())
if lazy_init_scale:
self.assertEqual(b.scale(torch.tensor([4.0], dtype=torch.float32, device=device)), 12.0)
def test_multinomial_invalid(self, device):
def test(probs):
with self.assertRaisesRegex(RuntimeError,
'probability tensor contains either `inf`, `nan` or element < 0'):
torch.multinomial(probs.to(device), 2)
torch.cuda.synchronize()
test(torch.Tensor([1, -1, 1]))
test(torch.Tensor([1, inf, 1]))
test(torch.Tensor([1, -inf, 1]))
test(torch.Tensor([1, 1, nan]))
def test_multinomial_invalid_distribution(self, device):
def test(probs, replacement):
with self.assertRaisesRegex(RuntimeError,
r"invalid multinomial distribution \(sum of probabilities <= 0\)"):
torch.multinomial(probs, 2, replacement)
torch.cuda.synchronize()
x = torch.zeros(3, device=device)
y = torch.zeros(3, 3, device=device)
z = torch.zeros(3, 3, device=device)
z[1, :] = 1
test(x, False)
test(y, False)
test(z, False)
# Verify only for CPU as replacement=True
# throws device side assert triggered.
if self.device_type == 'cpu':
test(x, True)
test(y, True)
test(z, True)
def _test_multinomial_empty(self, device, replacement, num_samples):
probs = torch.ones(0, 3, device=device)
expected = torch.empty(0, num_samples, dtype=torch.int64)
out = torch.multinomial(probs, num_samples=num_samples, replacement=replacement)
self.assertEqual(out, expected)
def test_multinomial_empty_w_replacement(self, device):
self._test_multinomial_empty(device, True, 1)
self._test_multinomial_empty(device, True, 2)
def test_multinomial_empty_wo_replacement(self, device):
self._test_multinomial_empty(device, False, 1)
self._test_multinomial_empty(device, False, 2)
def _generate_input(self, shape, dtype, device, with_extremal):
if shape == ():
x = torch.tensor((), dtype=dtype, device=device)
else:
if dtype.is_floating_point or dtype.is_complex:
# work around torch.randn not being implemented for bfloat16
if dtype == torch.bfloat16:
x = torch.randn(*shape, device=device) * random.randint(30, 100)
x = x.to(torch.bfloat16)
else:
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
x[torch.randn(*shape) > 0.5] = 0
if with_extremal and dtype.is_floating_point:
# Use extremal values
x[torch.randn(*shape) > 0.5] = float('nan')
x[torch.randn(*shape) > 0.5] = float('inf')
x[torch.randn(*shape) > 0.5] = float('-inf')
elif with_extremal and dtype.is_complex:
x[torch.randn(*shape) > 0.5] = complex('nan')
x[torch.randn(*shape) > 0.5] = complex('inf')
x[torch.randn(*shape) > 0.5] = complex('-inf')
elif dtype == torch.bool:
x = torch.zeros(shape, dtype=dtype, device=device)
x[torch.randn(*shape) > 0.5] = True
else:
x = torch.randint(15, 100, shape, dtype=dtype, device=device)
return x
def _test_where_scalar_template(self, device, dtype, exec_fn):
for with_extremal in [True, False]:
for ndims in range(0, 4):
shape = self._rand_shape(ndims, min_size=5, max_size=10)
for n in range(ndims + 1):
for c in combinations(list(range(ndims)), n):
for scalar_type in [int, float, complex]:
if dtype.is_complex:
condition = self._generate_input(shape, dtype, device, with_extremal).abs() > 0.5
else:
condition = self._generate_input(shape, dtype, device, with_extremal) > 0.5
x = self._generate_input(shape, dtype, device, with_extremal)
if not dtype.is_complex and scalar_type == complex:
continue
scalar_1 = scalar_type(random.random())
exec_fn(scalar_type, dtype, condition, x, scalar_1)
# For current implementation,
# below are the valid `TensorDtype` and `ScalarType` combinations.
def _where_valid_scalar_tensor_combination(self, scalar_type, dtype):
if (scalar_type == int and dtype == torch.long):
return True
elif (scalar_type == float and dtype == torch.double):
return True
elif (scalar_type == complex and dtype == torch.complex128):
return True
return False
@onlyOnCPUAndCUDA
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes() +
torch.testing.get_all_complex_dtypes()))
def test_where_scalar_invalid_combination_raises(self, device, dtype):
def checkRaises(scalar_type, dtype, condition, x, scalar_1):
if not self._where_valid_scalar_tensor_combination(scalar_type, dtype):
# Note: This should fail once `where` supports type promotion.
with self.assertRaisesRegex(RuntimeError, "expected scalar type"):
torch.where(condition, x, scalar_1)
self._test_where_scalar_template(device, dtype, checkRaises)
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes() +
torch.testing.get_all_complex_dtypes()))
def test_where_scalar_valid_combination(self, device, dtype):
def checkResult(scalar_type, dtype, condition, x, scalar_1):
if self._where_valid_scalar_tensor_combination(scalar_type, dtype):
def x_like(scalar, without_dtype=False):
return torch.tensor(scalar, dtype=dtype, device=device).expand_as(x)
# X = Tensor, Y = Scalar
scalar_out = torch.where(condition, x, scalar_1)
tensor_out = torch.where(condition, x, x_like(scalar_1))
self.assertEqual(scalar_out, tensor_out)
# X = Scalar, Y = Tensor
scalar_out = torch.where(condition, scalar_1, x)
tensor_out = torch.where(condition, x_like(scalar_1), x)
self.assertEqual(scalar_out, tensor_out)
self._test_where_scalar_template(device, dtype, checkResult)
# As the test fails with Runtime Error not raised on XLA
@onlyOnCPUAndCUDA
def test_where_scalar_scalar(self, device):
# Scalar-Scalar Version
height = 5
width = 5
default_dtype = torch.get_default_dtype()
for test_default_dtype in [torch.float, torch.double]:
torch.set_default_dtype(test_default_dtype)
for scalar_type_1 in [int, float, complex]:
for scalar_type_2 in [int, float, complex]:
x1 = scalar_type_1(random.random() * random.randint(10, 20))
x2 = scalar_type_2(random.random() * random.randint(20, 30))
condition = torch.randn(height, width, device=device) > 0.5
if scalar_type_1 != scalar_type_2:
self.assertRaisesRegex(RuntimeError, "expected scalar type", lambda: torch.where(condition, x1, x2))
else:
def get_dtype(scalar_type):
complex_dtype = torch.complex64 if torch.float == torch.get_default_dtype() else torch.complex128
type_map = {int: torch.long, float: torch.get_default_dtype(), complex: complex_dtype}
return type_map[scalar_type]
expected = torch.zeros((height, width), dtype=get_dtype(scalar_type_1))
expected[condition] = x1
expected[~condition] = x2
result = torch.where(condition, x1, x2)
self.assertEqual(expected, result)
# Reset the original dtype
torch.set_default_dtype(default_dtype)
# Tests that compare a device's computation with the (gold-standard) CPU's.
class TestDevicePrecision(TestCase):
exact_dtype = True
@onlyCUDA
def test_index_add_bfloat16(self, device):
inp_tensor = torch.randn(5, 3, device='cpu').bfloat16()
t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.bfloat16, device='cpu')
index = torch.tensor([0, 4, 2], device='cpu')
out_cpu = inp_tensor.index_add(0, index, t)
inp_tensor = inp_tensor.to(device=device)
t = t.to(device=device)
index = index.to(device=device)
out_gpu = inp_tensor.index_add(0, index, t)
self.assertEqual(out_cpu, out_gpu, atol=1e-2, rtol=0)
def test_device_serialization(self, device):
x = torch.randn(4, 4, device=device)
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
self.assertEqual(x_copy, x)
self.assertIs(type(x_copy), type(x))
self.assertEqual(x_copy.device, x.device)
@deviceCountAtLeast(2)
def test_multidevice_serialization(self, devices):
x = [torch.randn(4, 4, device=devices[0]),
torch.randn(4, 4, device=devices[1])]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
for original, cp in zip(x, x_copy):
self.assertEqual(cp, original)
self.assertIs(type(cp), type(original))
self.assertEqual(cp.device, original.device)
@deviceCountAtLeast(1)
def test_copy_noncontig(self, devices):
def do_test(d0, d1):
x = torch.tensor([1.5, 2.5, 3.5, 4.5, 5.5, 6.5], device=d0)
y = torch.tensor([0, 0, 0, 0, 0, 0], device=d1)
self.assertNotEqual(x.dtype, y.dtype)
y[::2].copy_(x[::2])
self.assertEqual(y, [1, 0, 3, 0, 5, 0])
do_test('cpu', devices[0])
do_test(devices[0], 'cpu')
if len(devices) > 1:
do_test(devices[0], devices[1])
@deviceCountAtLeast(2)
def test_type_conversions_same_device(self, devices):
x = torch.randn(5, 5, device=devices[1])
self.assertEqual(x.int().device, torch.device(devices[1]))
self.assertEqual(x.type(torch.int).device, torch.device(devices[1]))
self.assertEqual(x.to(torch.int).device, torch.device(devices[1]))
@dtypesIfCUDA(torch.half, torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long,
torch.uint8)
@dtypes(torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long,
torch.uint8)
def test_from_sequence(self, device, dtype):
seq = [list(range(i * 4, i * 4 + 4)) for i in range(5)]
reference = torch.arange(0, 20).resize_(5, 4)
self.assertEqual(torch.tensor(seq, dtype=dtype, device=device), reference, exact_dtype=False)
@deviceCountAtLeast(1)
def test_advancedindex_mixed_cpu_devices(self, devices) -> None:
def test(x: torch.Tensor, ia: torch.Tensor, ib: torch.Tensor) -> None:
# test getitem
self.assertEqual(x[:, ia, None, ib, 0].cpu(),
x.cpu()[:, ia.cpu(), None, ib.cpu(), 0])
self.assertEqual(x[ia], x.cpu()[ia.cpu()])
# test setitem
x_clone1 = x.clone()
x_clone2 = x.clone()
first_shape = x[:, ia, None, ib, 0].shape
second_shape = x[ia].shape
x_clone1[:, ia, None, ib, 0] = torch.randn(first_shape).to(x_clone1)
x_clone2[ia] = torch.randn(second_shape).to(x_clone2)
cpu = torch.device('cpu')
for device in devices:
# Index cpu tensor with device tensor
x = torch.randn(3, 4, 4, 4, 3)
ia = torch.tensor([0, 2, 1]).to(device)
ib = torch.tensor([0, 2, 1]).to(device)
test(x, ia, ib)
# Index device tensor with cpu tensor
x = x.to(device)
ia = ia.to(cpu)
ib = ib.to(cpu)
test(x, ia, ib)
# Index cpu tensor with mixed cpu, device tensors
x = x.to(cpu)
ia = ia.to(cpu)
ib = ib.to(device)
test(x, ia, ib)
# Index device tensor with mixed cpu, device tensors
x = x.to(device)
ia = ia.to(cpu)
ib = ib.to(device)
test(x, ia, ib)
if len(devices) > 1:
other_device = devices[0]
if device == devices[0]:
other_device = devices[1]
# Index device tensor with mixed cpu, device tensors on different devices
x = x.to(device)
ia = ia.to(cpu)
ib = ib.to(other_device)
test(x, ia, ib)
def test_copy_broadcast(self, device) -> None:
x = torch.randn(10, 5)
y = torch.randn(5, device=device)
x.copy_(y)
self.assertEqual(x[3], y)
x = torch.randn(10, 5, device=device)
y = torch.randn(5)
x.copy_(y)
self.assertEqual(x[3], y)
# Below are fixtures and functions that generate tensor op comparison tests
# These tests run a single op on both a CPU and device tensor and compare the
# the results. In-place variants of the ops can also be run.
# Lists of dtypes to instantiate tensor op test variants.
_types = [
torch.half, torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long,
torch.uint8
]
_types_no_half = [
torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long,
torch.uint8
]
_float_types = [torch.half, torch.float, torch.double]
_complex_types = [torch.cfloat, torch.cdouble]
_complex_types_skip_rocm = [] if TEST_WITH_ROCM else _complex_types
_float_types_no_half = [torch.float, torch.double]
_signed_types = [
torch.half, torch.bfloat16, torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long
]
_signed_types_no_half = [
torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long
]
_integer_types = [
torch.uint8, torch.int8, torch.int16,
torch.int32, torch.int64
]
_cpu_types: List[torch.dtype] = []
_unsigned_types = [torch.uint8]
# Binary Float Ops
# Operators which use TensorIterator::binary_float_op
# These Ops promote integer inputs to Float.
binary_float_ops_inplace = ['atan2_', 'div_']
# Helper values and functions for producing tensors and scalars to use in tensor op tests.
# Tensor dimension sizes (Small, Medium, Large, Giant)
_S = 5
_M = 50
_L = 1000
_G = 275000000
# Value to clamp divisors to since dividing by small numbers can be unstable
# on devices.
_div_min = 2**-8
# Returns floating or integral scalar corresponding to dtype
def _number(floating, integer, dtype):
if dtype in [torch.half, torch.float, torch.double, torch.bfloat16]:
return floating
elif dtype in [torch.cfloat, torch.cdouble]:
return floating * (1 + 1j)
else:
return integer
# Converts half/bfloat16 dtype to float when device is cpu
def _convert_t(dtype, device):
if device == 'cpu' and dtype in {torch.half, torch.bfloat16}:
return torch.float
return dtype
# Returns a tensor of the requested shape, dtype, and device
# Requesting a half CPU tensor returns a float CPU tensor with
# values representable by a half.
# Initialization uses randint for non-float types and randn for float types.
def _make_tensor(shape, dtype, device, fill_ones=False) -> torch.Tensor:
# Returns a tensor filled with ones
if fill_ones:
return torch.ones(*shape, dtype=_convert_t(dtype, device), device=device)
# Returns a tensor with random integer values
if not (dtype.is_floating_point or dtype.is_complex):
t = torch.randint(0, 10, shape, device=device)
if dtype != torch.uint8:
t = t - 5 # generate negative values also
return t.to(_convert_t(dtype, device))
# Populates the CPU tensor with floats representable as half/bfloat16
if dtype == torch.half and device == 'cpu':
return torch.randn(*shape, dtype=torch.float, device=device).half().float()
if dtype == torch.bfloat16 and device == 'cpu':
return torch.randn(*shape, dtype=torch.float, device=device).bfloat16().float()
# Default: returns a tensor with random float values
return torch.randn(shape, dtype=dtype, device=device).to(dtype=dtype)
def _small_0d(dtype, device) -> torch.Tensor:
return _make_tensor((1,), dtype, device).squeeze()
def _small_2d(dtype, device, has_zeros=True, fill_ones=False, oneish=False):
t = _make_tensor((_S, _S), dtype, device, fill_ones=fill_ones)
if oneish:
return t.clamp(min=_number(.99, 1, dtype), max=1.01)
if not has_zeros:
return t.clamp(min=(_number(_div_min, 1, dtype)))
return t
def _small_3d(dtype, device, has_zeros=True, fill_ones=False, oneish=False):
t = _make_tensor((_S, _S, _S), dtype, device, fill_ones=fill_ones)
if oneish:
return t.clamp(min=_number(.99, 1, dtype), max=1.01)
if not has_zeros:
return t.clamp(min=(_number(_div_min, 1, dtype)))
return t
def _small_3d_ones(dtype, device):
return _small_3d(dtype, device, fill_ones=True)
def _small_3d_unique(dtype, device):
return (torch.randperm(_S * _S * _S,
dtype=_convert_t(dtype, device), device=device) + 1).view(_S, _S, _S)
def _medium_1d(dtype, device):
return _make_tensor((_M,), dtype, device)
def _medium_2d(dtype, device):
return _make_tensor((_M, _M), dtype, device)
def _large_2d(dtype, device):
t = _make_tensor((_L, _L), dtype, device)
return t.normal_()
def _giant_1d(dtype, device):
return _make_tensor((_G), dtype, device)
# Helper method that returns a function which takes dtype and device and
# instantiates tensors of the given shape.
# Useful for tensor op tests with custom shapes.
def _new_t(shape):
def tmp(dtype, device):
return _make_tensor(shape, dtype, device)
return tmp
def _wrap_maybe_warns(regex):
def decorator(fn):
def inner(self, device, dtype):
with self.maybeWarnsRegex(UserWarning, regex):
fn(self, device, dtype)
return inner
return decorator
# TODO: these tests should be refactored into other test suites using OpInfos
# TODO: random functions, cat, gather, scatter, index*, masked*,
# resize, resizeAs, storage_offset, storage, stride, unfold
# Each tests is defined in tensor_op_tests as a tuple of:
# - op name (string)
# - (sub)test name (string)
# - tensor constructor, takes dtype and device and constructs the tensor to run the op on
# - arg constructor, takes dtype and device and constructs op arguments
# - torch.half precision (=1e-5)
# - torch.bfloat16 precision (=1e-5)
# - precision (=1e-5), precision to use for all other dtypes
# - dtype_list (=_types), a list of torch dtypes to test the op(s) with
# - cpu_dtype_list (=[]), a list of torch dtypes to test the op(s) on cpu
# - make_inplace_variant (=True), if true the inplace version of the op (op_) is also tested
# - decorators (=[]), a list of decorators to apply to the test
# - self_position (=-1), the position of self in the arg list, -1 means skip function check
# - test_out (=False), whether to test the out= version of the operator
tensor_op_tests = [
('add', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2),
('add', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2),
('sub', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2),
('sub', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2),
('mul', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2),
('mul', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2),
('mul', 'scalar', _small_0d, lambda t, d: [_small_0d(torch.int32, d)], 1e-2),
('div', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1,
1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('div', 'tensor', _small_3d,
lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1,
1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('true_divide', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1,
1e-5, 1e-5, _types, _cpu_types, False),
('true_divide', 'with_inplace', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1,
1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('true_divide', 'tensor', _small_3d,
lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1,
1e-5, 1e-5, _types, _cpu_types, False),
('true_divide', 'tensor_with_inplace', _small_3d,
lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1,
1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('floor_divide', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1, 1e-5, 1e-5, _types),
('floor_divide', 'tensor', _small_3d,
lambda t, d: [_small_3d(t, d, has_zeros=False)], 1, 1e-5, 1e-5, _types),
('pow', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('pow', '1', _small_3d, lambda t, d: [_number(1., 1, t)], 1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('pow', '2', _small_3d, lambda t, d: [_number(2., 2, t)], 1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('pow', '3', _small_3d, lambda t, d: [_number(3., 3, t)], 1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('pow', '-1', _small_3d, lambda t, d: [_number(-1., -1, t)], 1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('pow', '-2', _small_3d, lambda t, d: [_number(-2., -2, t)],
1e-1, 1e-5, 1e-5, _float_types_no_half, _cpu_types, False),
('pow', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d).abs()],
1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes()),
('addbmm', '', _small_2d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)],
1e-1, 1e-1, 1e-4, torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM) + _complex_types,
_cpu_types, True, [tf32_on_and_off(0.01)]),
('addbmm', 'scalar', _small_2d, lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
1e-1, 1e-1, 1e-4, torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM) + _complex_types, _cpu_types, True,
[tf32_on_and_off(0.01), _wrap_maybe_warns("This overload of addbmm_? is deprecated")]),
('addbmm', 'two_scalars', _small_2d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
1e-1, 1e-1, 1e-4, torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM) + _complex_types, _cpu_types, True,
[tf32_on_and_off(0.01), _wrap_maybe_warns("This overload of addbmm_? is deprecated")]),
('baddbmm', '', _small_3d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)],
1e-2, 1e-1, 1e-4, torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM)),
('baddbmm', 'scalar', _small_3d, lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
1e-2, 1e-1, 1e-4, torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM) + _complex_types, _cpu_types, True,
[tf32_on_and_off(0.05), _wrap_maybe_warns("This overload of baddbmm_? is deprecated")]),
('baddbmm', 'two_scalars', _small_3d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
1e-2, 1e-1, 1e-4, torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM) + _complex_types,
_cpu_types, True, [tf32_on_and_off(0.05), _wrap_maybe_warns("This overload of baddbmm_? is deprecated")]),
('bmm', '', _small_3d, lambda t, d: [_small_3d(t, d)],
1e-5, 1e-5, 1e-5, _float_types_no_half, _cpu_types, False),
('addcdiv', '', _small_2d,
lambda t, d: [_small_2d(t, d),
_small_2d(t, d, has_zeros=False)], 1, 1, 1e-3,
torch.testing.get_all_fp_dtypes(), _cpu_types, True),
('addcdiv', 'scalar', _small_2d,
lambda t, d: [_number(2.8, 1, t), _small_2d(t, d),
_small_2d(t, d, has_zeros=False)], 1, 1e-5, 1e-3,
_float_types, _cpu_types, True),
('addcmul', '', _small_3d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)], 1e-2, 1e-1, 1e-3,
torch.testing.get_all_dtypes(include_complex=True, include_bool=False)),
('addcmul', 'scalar', _small_3d,
lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)], 1e-2,
1e-1, 1e-5, torch.testing.get_all_dtypes(include_complex=True, include_bool=False), _cpu_types, True,
[_wrap_maybe_warns("This overload of addcmul_? is deprecated")]),
('addmm', '', _medium_2d, lambda t, d: [_medium_2d(t, d), _medium_2d(t, d)], 1e-1, 1e-1, 1e-4,
torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM),
_cpu_types, True, [tf32_on_and_off(0.01)], 0, True),
('addmm', 'scalar', _medium_2d,
lambda t, d: [_number(0.4, 2, t), _medium_2d(t, d), _medium_2d(t, d)], 1e-1, 1e-1, 1e-4,
torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM), _cpu_types, True,
[tf32_on_and_off(0.01), _wrap_maybe_warns("This overload of addmm_? is deprecated")]),
('addmm', 'two_scalars', _medium_2d,
lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_2d(t, d), _medium_2d(t, d)], 1e-1, 1e-1, 1e-4,
torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM), _cpu_types, True,
[tf32_on_and_off(0.01), _wrap_maybe_warns("This overload of addmm_? is deprecated")]),
('addmv', '', _medium_1d, lambda t, d: [_medium_2d(t, d), _medium_1d(t, d)], 1e-2, 1e-1, 1e-4,
torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM) + _complex_types_skip_rocm, _cpu_types,
True, [], 0, True),
('addmv', 'scalar', _medium_1d,
lambda t, d: [_number(0.4, 2, t), _medium_2d(t, d), _medium_1d(t, d)], 1e-2, 1e-1, 1e-4,
torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM) + _complex_types_skip_rocm, _cpu_types, True,
[_wrap_maybe_warns("This overload of addmv_? is deprecated")]),
('addmv', 'two_scalars', _medium_1d,
lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_2d(t, d), _medium_1d(t, d)], 1e-2, 1e-1, 1e-4,
torch.testing.get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM) + _complex_types_skip_rocm, _cpu_types, True,
[_wrap_maybe_warns("This overload of addmv_? is deprecated")]),
('atan2', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-2, 1e-5, 1e-5, _types, _types_no_half),
('angle', '', _small_3d, lambda t, d: [], 0, 0, 0, _types_no_half, [torch.bfloat16], False),
('fmod', 'value', _small_3d, lambda t, d: [3], 1e-3),
('fmod', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-3),
('chunk', '', _medium_2d, lambda t, d: [4], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('chunk', 'dim', _medium_2d, lambda t, d: [4, 1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('chunk', 'neg_dim', _medium_2d, lambda t, d: [4, -2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('clamp', 'neg', _medium_2d, lambda t, d: [-1, 5], 1e-5, 1e-2, 1e-5, _signed_types, [torch.bfloat16]),
('clamp', 'pos', _medium_2d, lambda t, d: [1, 5], 1e-5, 1e-2, 1e-5, _unsigned_types, [torch.bfloat16]),
('clamp_min', '', _medium_2d, lambda t, d: [1], 1e-2, 1e-2, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False, include_bfloat16=True), [torch.bfloat16]),
('clamp_max', '', _medium_2d, lambda t, d: [1], 1e-2, 1e-2, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False, include_bfloat16=True), [torch.bfloat16]),
('clone', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('contiguous', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('conj', '', _small_3d, lambda t, d: [], 1e-5, 0, 1e-5, _types_no_half, [torch.bfloat16], False),
('cross', '', _new_t((_M, 3, _M)), lambda t, d: [_new_t((_M, 3, _M))(t, d)],
1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
('logcumsumexp', '', _small_3d, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
('logcumsumexp', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
('cummax', '', _small_3d_unique, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
('cummax', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
('cummin', '', _small_3d_unique, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
('cummin', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
('cumprod', '', _small_3d, lambda t, d: [1], 1e-2, 1e-5, 1e-4, _types + _complex_types, _cpu_types, False),
('cumprod', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-4, _types + _complex_types, _cpu_types, False),
('cumsum', '', _small_3d, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('cumsum', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('dim', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('dist', '', _small_2d, lambda t, d: [_small_2d(t, d)], 1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
('dist', '3_norm', _small_2d, lambda t, d: [_small_2d(t, d), 3], 1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
('dist', '2_5_norm', _small_2d, lambda t, d: [_small_2d(t, d), 2.5],
1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
('dot', '', _medium_1d, lambda t, d: [_medium_1d(t, d)],
1e-2, 1e-5, 1e-5, _float_types + _complex_types, _cpu_types, False),
('element_size', '', _medium_1d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _float_types_no_half, _cpu_types, False),
('eq', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False)),
('eq', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)], 1e-5, 1e-5, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False)),
('ne', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False)),
('ne', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)], 1e-5, 1e-5, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False)),
('equal', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('equal', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('expand', '', _new_t((_M, 1, _M)), lambda t, d: [_M, 4, _M], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('expand_as', '', _new_t((_M, 1, _M)), lambda t, d: [_new_t((_M, 4, _M))(t, d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('fill_', '', _medium_2d, lambda t, d: [_number(3.14, 3, t)], 1e-3, 1e-5, 1e-5, _types, _cpu_types, False),
('gcd', '', _small_3d, lambda t, d: [_small_3d(t, d)], 0, 0, 0,
[torch.int16, torch.int32, torch.int64],
[torch.int16, torch.int32, torch.int64], True, [onlyOnCPUAndCUDA]),
('lcm', '', _small_3d, lambda t, d: [_small_3d(t, d)], 0, 0, 0,
[torch.int16, torch.int32, torch.int64],
[torch.int16, torch.int32, torch.int64], True, [onlyOnCPUAndCUDA]),
('ge', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False)),
('le', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False)),
('gt', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False)),
('lt', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False)),
('is_contiguous', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
# TODO: can't check negative case - cross-device copy is contiguous
('is_same_size', 'negative', _medium_2d, lambda t, d: [_small_3d(t, d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('is_same_size', 'positive', _medium_2d, lambda t, d: [_medium_2d(t, d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('is_set_to', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
# TODO: positive case
('kthvalue', '', _small_3d_unique, lambda t, d: [3], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('kthvalue', 'dim', _small_3d_unique, lambda t, d: [3, 1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('kthvalue', 'neg_dim', _small_3d_unique, lambda t, d: [3, -1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('lerp', '', _small_3d, lambda t, d: [_small_3d(t, d), 0.3],
1e-2, 1e-5, 1e-5, _float_types),
('max', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('max', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('max', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('max', 'elementwise', _medium_2d, lambda t, d: [_medium_2d(t, d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('maximum', '', _medium_2d, lambda t, d: [_medium_2d(t, d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('min', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('min', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('min', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('min', 'elementwise', _medium_2d, lambda t, d: [_medium_2d(t, d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('minimum', '', _medium_2d, lambda t, d: [_medium_2d(t, d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('mean', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5,
torch.testing.get_all_fp_dtypes() + torch.testing.get_all_complex_dtypes(), _cpu_types, False),
('mean', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-2, 1e-5,
torch.testing.get_all_fp_dtypes() + torch.testing.get_all_complex_dtypes(), _cpu_types, False),
('mean', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-2, 1e-2,
torch.testing.get_all_fp_dtypes() + torch.testing.get_all_complex_dtypes(), _cpu_types, False),
# Double here because the CPU result will be wrong otherwise
('mean', '64bit_indexing', _giant_1d, lambda t, d: [],
1e-3, 1e-5, 1e-5, [torch.double], _cpu_types, False, [slowTest]),
('mode', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('mode', 'dim', _small_3d, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('mode', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('mvlgamma', '2d_p=1', lambda t, d: _small_2d(t, d).clamp(0.1, 10), lambda t, d: [1],
1e-5, 1e-5, 1e-5, _float_types_no_half),
('mvlgamma', '2d_p=2', lambda t, d: _small_2d(t, d).clamp(0.6, 10), lambda t, d: [2],
1e-5, 1e-5, 1e-5, _float_types_no_half),
('remainder', 'value', _small_3d, lambda t, d: [3], 1e-1, 1e-2, 1e-5, _signed_types),
('remainder', 'negative_value', _small_3d, lambda t, d: [-3], 1e-1, 1e-2, 1e-5, _signed_types),
('remainder', 'tensor', _small_3d,
lambda t, d: [_small_3d(t, d, has_zeros=False)],
1e-1, 1e-2, 1e-5, _signed_types),
('remainder', 'negative_tensor', _small_3d,
lambda t, d: [0 - _small_3d(t, d, has_zeros=False)],
1e-1, 1e-2, 1e-5, _signed_types),
('std', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
('std', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
('std', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
('var', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
('var', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
('var', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-2, 1e-5, torch.testing.get_all_fp_dtypes(), _cpu_types, False),
('ndimension', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('nelement', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('numel', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('narrow', '', _small_3d, lambda t, d: [1, 3, 2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('narrow', 'neg_dim', _small_3d, lambda t, d: [-1, 3, 2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('nonzero', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('norm', '', _small_3d, lambda t, d: [], 1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes(), _cpu_types, False),
('norm', '3_norm', _small_3d, lambda t, d: [3], 1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes(), _cpu_types, False),
('norm', '3_norm_dim', _small_3d, lambda t, d: [3, 0], 1e-1, 1e-1, 1e-5,
torch.testing.get_all_fp_dtypes(), _cpu_types, False),
('norm', '3_norm_neg_dim', _small_3d, lambda t, d: [3, -2], 1e-1, 1e-1, 1e-5,
torch.testing.get_all_fp_dtypes(), _cpu_types, False),
('new_ones', '', _small_3d, lambda t, d: [1, 2, 3, 4, 5], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('permute', '', _new_t((1, 2, 3, 4)), lambda t, d: [2, 1, 3, 0], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('put_', '', _new_t((2, 5, 3)),
lambda t, d: [torch.LongTensor([[0], [-2]]).to(device=d),
torch.LongTensor([[3], [4]]).to(dtype=_convert_t(t, d), device=d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('put_', 'empty', _new_t((2, 3)),
lambda t, d: [torch.LongTensor([]).to(device=d), torch.LongTensor([]).to(dtype=_convert_t(t, d), device=d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('put_', 'accumulate', _new_t((2, 2)),
lambda t, d: [torch.LongTensor([[1], [-3]]).to(device=d),
torch.LongTensor([[1], [2]]).to(dtype=_convert_t(t, d), device=d),
True],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('prod', '', lambda t, d: _small_2d(t, d, oneish=True), lambda t, d: [], 1e-2, 1e-1, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False), _cpu_types, False),
('prod', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-1, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False), _cpu_types, False),
('prod', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-1, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False), _cpu_types, False),
('sum', '', _small_2d, lambda t, d: [], 1e-2, 1e-2, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False), _cpu_types, False),
('sum', 'dim', _small_3d, lambda t, d: [1], 1e-2, 1e-2, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False), _cpu_types, False),
('sum', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
('sum', 'complex', _small_2d, lambda t, d: [], 1e-2, 1e-2, 1e-5, _complex_types, _cpu_types, False),
('sum', 'complex_dim', _small_3d, lambda t, d: [1], 1e-2, 1e-2, 1e-5, _complex_types, _cpu_types, False),
('sum', 'complex_neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _complex_types, _cpu_types, False),
('renorm', '2_norm', _small_3d, lambda t, d: [2, 1, 1], 1e-3, 1e-5, 1e-5, _float_types),
('renorm', '2_norm_neg_dim', _small_3d, lambda t, d: [2, -1, 1], 1e-3, 1e-5, 1e-5, _float_types),
('renorm', '1_5_norm', _small_3d, lambda t, d: [1.5, 1, 1], 1e-3, 1e-5, 1e-5, _float_types),
('repeat', '', _small_2d, lambda t, d: [2, 2, 2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('size', '', _new_t((1, 2, 3, 4)), lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('size', 'dim', _new_t((1, 2, 3, 4)), lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('size', 'neg_dim', _new_t((1, 2, 3, 4)), lambda t, d: [-2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('sort', '', _small_3d_unique, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('sort', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('sort', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('sort', 'dim_descending', _small_3d_unique, lambda t, d: [1, True], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('sort', 'neg_dim_descending', _small_3d_unique, lambda t, d: [-1, True], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('split', '', _small_3d, lambda t, d: [2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('split', 'dim', _small_3d, lambda t, d: [2, 1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('split', 'neg_dim', _small_3d, lambda t, d: [2, -3], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('squeeze', '', _new_t((1, 2, 1, 4)), lambda t, d: [],),
('squeeze', 'dim', _new_t((1, 2, 1, 4)), lambda t, d: [2], ),
('squeeze', 'neg_dim', _new_t((1, 2, 1, 4)), lambda t, d: [-2], ),
('t', '', _new_t((1, 2)), lambda t, d: [],),
('take', '', _new_t((3, 4)),
lambda t, d: [torch.LongTensor([[0], [-2]]).to(device=d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('transpose', '', _new_t((1, 2, 3, 4)), lambda t, d: [1, 2],),
('transpose', 'neg_dim', _new_t((1, 2, 3, 4)), lambda t, d: [-1, -2], ),
('tolist', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('topk', 'dim_sort', _small_3d_unique, lambda t, d: [2, 1, False, True],
1e-5, 1e-5, 1e-5, torch.testing.get_all_dtypes(include_complex=False, include_bool=False), _cpu_types, False),
('topk', 'neg_dim_sort', _small_3d_unique, lambda t, d: [2, -1, False, True],
1e-5, 1e-5, 1e-5, torch.testing.get_all_dtypes(include_complex=False, include_bool=False), _cpu_types, False),
('topk', 'dim_desc_sort', _small_3d_unique, lambda t, d: [2, 1, True, True],
1e-5, 1e-5, 1e-5, torch.testing.get_all_dtypes(include_complex=False, include_bool=False), _cpu_types, False),
('trace', '', _medium_2d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _types, _cpu_types, False),
('tril', '', _medium_2d, lambda t, d: [],),
('tril', 'zero_stride', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('tril', 'positive', _medium_2d, lambda t, d: [2], ),
('tril', 'negative', _medium_2d, lambda t, d: [-2], ),
('triu', '', _medium_2d, lambda t, d: [],),
('triu', 'zero_stride', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('triu', 'positive', _medium_2d, lambda t, d: [2], ),
('triu', 'negative', _medium_2d, lambda t, d: [-2], ),
('unsqueeze', '', _new_t((2, 3, 4)), lambda t, d: [2],),
('unsqueeze', 'neg_dim', _new_t((2, 3, 4)), lambda t, d: [-2], ),
('view', 'contiguous', _small_3d, lambda t, d: [25, 5], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('view_as', '', _small_3d, lambda t, d: [_make_tensor((25, 5), t, d)],
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('zero_', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('new_zeros', '', _small_3d, lambda t, d: [1, 2, 3, 4], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
('flip', 'd0', _small_3d, lambda t, d: [0], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('flip', 'd02', _small_3d, lambda t, d: [0, 2], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('flip', 'd20', _small_3d, lambda t, d: [2, 0], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('flip', 'neg_d', _small_3d, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('rot90', 'k1_d01', _small_2d, lambda t, d: [1, [0, 1]], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('rot90', 'k1_d12', _small_3d, lambda t, d: [1, [1, 2]], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('rot90', 'k1_neg_d', _small_3d, lambda t, d: [1, [1, -1]], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('rot90', 'default', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
('rsqrt', '', lambda t, d: _small_3d(t, d) + 1, lambda t, d: [], 1e-2, 1e-5, 1e-4, _float_types_no_half),
('sinh', '', lambda t, d: _small_3d(t, d).clamp(-1, 1), lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types),
('tan', '', lambda t, d: _small_3d(t, d).clamp(-1, 1), lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types),
('tan', 'complex', lambda t, d: _small_3d(t, d), lambda t, d: [], 1e-3, 1e-5, 1e-5, _complex_types),
('__lshift__', '',
lambda t, d: torch.pow(2, torch.arange(1, 5).to(dtype=_convert_t(t, d), device=d)),
lambda t, d: [2],
1e-3, 1e-5, 1e-3, _signed_types, _cpu_types, False),
('__rshift__', '',
lambda t, d: torch.pow(2, torch.arange(3, 7).to(dtype=_convert_t(t, d), device=d)),
lambda t, d: [2],
1e-3, 1e-5, 1e-3, _signed_types, _cpu_types, False),
# lapack tests
('qr', 'square', _small_2d, lambda t, d: [],
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
('qr', 'skinny', _new_t((3, 4)), lambda t, d: [],
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
('qr', 'fat', _new_t((4, 3)), lambda t, d: [],
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
('qr', 'big', _large_2d, lambda t, d: [],
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
('geqrf', '', _new_t((20, 20)), lambda t, d: [],
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
('eig', 'with_eigvec', _new_t((10, 10)), lambda t, d: [True],
1e-5, 1e-5, 1e-5, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma, onlyOnCPUAndCUDA]),
('abs', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5,
torch.testing.get_all_dtypes(include_complex=False, include_bool=False), [torch.bfloat16]),
('sign', '', _small_3d, lambda t, d: []),
('log', '', _small_3d, lambda t, d: [], 1e-2, 1e-2, 1e-5, torch.testing.get_all_fp_dtypes(), [torch.bfloat16]),
('log10', '', _small_3d, lambda t, d: [], 1e-2, 5e-2, 1e-5, torch.testing.get_all_fp_dtypes(), [torch.bfloat16]),
('log1p', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types_no_half, [torch.bfloat16]),
('log2', '', _small_3d, lambda t, d: [], 1e-2, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes(), [torch.bfloat16]),
('logit', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, torch.testing.get_all_fp_dtypes()),
('sqrt', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, torch.testing.get_all_fp_dtypes(), [torch.bfloat16]),
('tanh', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5,
torch.testing.get_all_fp_dtypes() + _complex_types, [torch.bfloat16]),
('asin', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
('atan', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
('acosh', '', lambda t, d: _small_3d(t, d) + 1, lambda t, d: [], 1e-3, 1e-2, 1e-5, torch.testing.get_all_fp_dtypes()),
('asinh', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, torch.testing.get_all_fp_dtypes()),
('atanh', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, torch.testing.get_all_fp_dtypes()),
('erf', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, torch.testing.get_all_fp_dtypes(), [torch.bfloat16]),
('erfc', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
('erfinv', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
('exp', '', _small_3d, lambda t, d: [], 1e-2, 5e-2, 1e-5, torch.testing.get_all_fp_dtypes()),
('exp', 'small', lambda t, d: _small_3d(t, d).clamp(-1, 1),
lambda t, d: [], 1e-2, 5e-2, 1e-5, torch.testing.get_all_fp_dtypes(), [torch.bfloat16]),
('rad2deg', '', _small_3d, lambda t, d: [], 1e-1, 1e-0, 1e-5, torch.testing.get_all_fp_dtypes(), [torch.bfloat16]),
('deg2rad', '', _small_3d, lambda t, d: [], 1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes(), [torch.bfloat16]),
('reciprocal', '', _small_3d, lambda t, d: [], 1e-1, 1e-1, 1e-5, torch.testing.get_all_fp_dtypes(), [torch.bfloat16]),
('floor', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
('frac', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
('round', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
('trunc', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
('ceil', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
('lgamma', '', _small_3d, lambda t, d: [], 1e-2, 1e-1, 1e-5, _float_types_no_half, [torch.bfloat16]),
('digamma', 'op', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e0, _float_types_no_half),
]
# Creates and decorates a generic test and adds it to the class.
def generate_test_function(cls,
op_str,
subtest_str,
tensor_ctor,
arg_ctor,
half_precision,
bfloat16_precision,
float_precision,
dtype_list,
dtype_cpu_list,
decorators,
self_position,
test_out) -> None:
def fn(self, device, dtype) -> None:
# Generates the CPU inputs
# Note: CPU tensors are never torch.half
cpu_tensor = tensor_ctor(dtype, 'cpu')
cpu_args = arg_ctor(dtype, 'cpu')
# Converts CPU tensors to device tensors
device_tensor = cpu_tensor.to(dtype=dtype, device=device)
device_args = [arg.to(device=device) if isinstance(arg, torch.Tensor) else arg for arg in cpu_args]
# Converts float device tensors to half/bfloat16 when the dtype is half/bfloat16
# Note: CPU half tensors don't support many operations.
if dtype in {torch.half, torch.bfloat16}:
device_args = [arg.to(dtype=dtype) if
(isinstance(arg, torch.Tensor) and arg.dtype == torch.float) else arg
for arg in device_args]
# Special case for binary float ops (binary ops that promote int to float)
if op_str in binary_float_ops_inplace and \
'inplace' in subtest_str and dtype in _integer_types:
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to "):
cpu_result = getattr(cpu_tensor, op_str)(*cpu_args)
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to "):
device_result = getattr(device_tensor, op_str)(*device_args)
return # Nothing more to check
# Runs the tensor op on CPU and device
cpu_result = getattr(cpu_tensor, op_str)(*cpu_args)
device_result = getattr(device_tensor, op_str)(*device_args)
dtype2precision = {torch.half : half_precision,
torch.bfloat16 : bfloat16_precision}
# Compares CPU and device inputs and outputs
precision = dtype2precision.get(dtype, float_precision)
self.assertEqual(cpu_tensor, device_tensor, atol=precision, rtol=0, exact_dtype=False)
self.assertEqual(cpu_args, device_args, atol=precision, rtol=0, exact_dtype=False)
self.assertEqual(cpu_result, device_result, atol=precision, rtol=0, exact_dtype=False)
# check method matches with function
if self_position >= 0:
cpu_args.insert(self_position, cpu_tensor)
device_args.insert(self_position, device_tensor)
cpu_function_result = getattr(torch, op_str)(*cpu_args)
device_function_result = getattr(torch, op_str)(*device_args)
self.assertEqual(cpu_result, cpu_function_result, atol=precision, rtol=0)
self.assertEqual(device_result, device_function_result, atol=precision, rtol=0)
# check method matches with function(out)
if test_out:
bad_value = math.nan if dtype.is_floating_point or dtype.is_complex else 666
cpu_out = torch.full_like(cpu_result, bad_value)
device_out = torch.full_like(device_result, bad_value)
getattr(torch, op_str)(*cpu_args, out=cpu_out)
getattr(torch, op_str)(*device_args, out=device_out)
self.assertEqual(cpu_result, cpu_out, atol=precision, rtol=0)
self.assertEqual(device_result, device_out, atol=precision, rtol=0)
test_name = "test_" + op_str + subtest_str
assert not hasattr(cls, test_name), "{0} already in TestDevicePrecision".format(test_name)
# Constructs decorator list and applies decorators
if decorators is None:
decorators = [dtypes(*dtype_list)]
else:
decorators = decorators + [dtypes(*dtype_list)]
decorators = decorators + [dtypesIfCPU(*dtype_cpu_list)]
for dec in decorators:
fn = dec(fn)
setattr(cls, test_name, fn)
# Instantiates variants of tensor_op_tests and adds them to the given class.
def generate_tensor_op_tests(cls) -> None:
def caller(cls,
op_str,
subtest_str,
tensor_ctor,
arg_ctor,
half_precision=1e-5,
bfloat16_precision=1e-5,
float_precision=1e-5,
dtype_list=_types,
dtype_cpu_list=_cpu_types,
make_inplace_variant=True,
decorators=None,
self_position=-1,
test_out=False):
if subtest_str:
subtest_str = '_' + subtest_str
generate_test_function(cls, op_str, subtest_str, tensor_ctor, arg_ctor, half_precision,
bfloat16_precision, float_precision, dtype_list, dtype_cpu_list,
decorators, self_position, test_out)
if make_inplace_variant:
op_str = op_str + '_'
subtest_str = 'inplace' + subtest_str
generate_test_function(cls, op_str, subtest_str, tensor_ctor, arg_ctor, half_precision,
bfloat16_precision, float_precision, dtype_list, dtype_cpu_list,
decorators, -1, False)
for test in tensor_op_tests:
caller(cls, *test)
class TestTensorDeviceOps(TestCase):
exact_dtype = True
class TestTorch(AbstractTestCases._TestTorchMixin):
exact_dtype = True
# TODO: this empy class is temporarily instantiated for XLA compatibility
# once XLA updates their test suite it should be removed
class TestViewOps(TestCase):
pass
# Generates tests
# Note: test generation must be done at file scope, not within main, or
# pytest will fail.
add_neg_dim_tests()
generate_tensor_op_tests(TestTensorDeviceOps)
instantiate_device_type_tests(TestViewOps, globals())
instantiate_device_type_tests(TestTensorDeviceOps, globals())
instantiate_device_type_tests(TestTorchDeviceType, globals())
instantiate_device_type_tests(TestDevicePrecision, globals(), except_for='cpu')
if __name__ == '__main__':
run_tests()