blob: 124f3b124ab0c5699fb01d8295159ffe15df2df5 [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/UpSample.h>
namespace at {
namespace native {
namespace {
template <typename scalar_t>
static void upsample_nearest3d_out_frame(
scalar_t* odata,
scalar_t* idata,
int64_t input_depth,
int64_t input_height,
int64_t input_width,
int64_t output_depth,
int64_t output_height,
int64_t output_width,
int64_t nbatch,
int64_t channels) {
const float depth_scale = (float)input_depth / (float)output_depth;
const float height_scale = (float)input_height / (float)output_height;
const float width_scale = (float)input_width / (float)output_width;
channels = channels * nbatch;
// special case: just copy
if (input_depth == output_depth && input_height == output_height &&
input_width == output_width) {
for (int64_t d2 = 0; d2 < output_depth; ++d2) {
const int64_t d1 = d2;
for (int64_t h2 = 0; h2 < output_height; ++h2) {
const int64_t h1 = h2;
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const int64_t w1 = w2;
const scalar_t* pos1 =
&idata[d1 * input_height * input_width + h1 * input_width + w1];
scalar_t* pos2 =
&odata
[d2 * output_height * output_width + h2 * output_width + w2];
for (int64_t c = 0; c < channels; ++c) {
pos2[0] = pos1[0];
pos1 += input_depth * input_height * input_width;
pos2 += output_depth * output_height * output_width;
}
}
}
}
return;
}
for (int64_t d2 = 0; d2 < output_depth; ++d2) {
const int64_t d1 =
nearest_neighbor_compute_source_index(depth_scale, d2, input_depth);
for (int64_t h2 = 0; h2 < output_height; ++h2) {
const int64_t h1 =
nearest_neighbor_compute_source_index(height_scale, h2, input_height);
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const int64_t w1 =
nearest_neighbor_compute_source_index(width_scale, w2, input_width);
const scalar_t* pos1 =
&idata[d1 * input_height * input_width + h1 * input_width + w1];
scalar_t* pos2 =
&odata[d2 * output_height * output_width + h2 * output_width + w2];
for (int64_t c = 0; c < channels; ++c) {
pos2[0] = pos1[0];
pos1 += input_depth * input_height * input_width;
pos2 += output_depth * output_height * output_width;
}
}
}
}
}
template <typename scalar_t>
static void upsample_nearest3d_backward_out_frame(
scalar_t* odata,
scalar_t* idata,
int64_t input_depth,
int64_t input_height,
int64_t input_width,
int64_t output_depth,
int64_t output_height,
int64_t output_width,
int64_t nbatch,
int64_t channels) {
const float depth_scale = (float)input_depth / (float)output_depth;
const float height_scale = (float)input_height / (float)output_height;
const float width_scale = (float)input_width / (float)output_width;
channels = channels * nbatch;
// special case: just copy
if (input_depth == output_depth && input_height == output_height &&
input_width == output_width) {
for (int64_t d2 = 0; d2 < output_depth; ++d2) {
const int64_t d1 = d2;
for (int64_t h2 = 0; h2 < output_height; ++h2) {
const int64_t h1 = h2;
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const int64_t w1 = w2;
scalar_t* pos1 =
&idata[d1 * input_height * input_width + h1 * input_width + w1];
const scalar_t* pos2 =
&odata
[d2 * output_height * output_width + h2 * output_width + w2];
for (int64_t c = 0; c < channels; ++c) {
pos1[0] += pos2[0];
pos1 += input_depth * input_height * input_width;
pos2 += output_depth * output_height * output_width;
}
}
}
}
return;
}
for (int64_t d2 = 0; d2 < output_depth; ++d2) {
const int64_t d1 =
nearest_neighbor_compute_source_index(depth_scale, d2, input_depth);
for (int64_t h2 = 0; h2 < output_height; ++h2) {
const int64_t h1 =
nearest_neighbor_compute_source_index(height_scale, h2, input_height);
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const int64_t w1 =
nearest_neighbor_compute_source_index(width_scale, w2, input_width);
scalar_t* pos1 =
&idata[d1 * input_height * input_width + h1 * input_width + w1];
const scalar_t* pos2 =
&odata[d2 * output_height * output_width + h2 * output_width + w2];
for (int64_t c = 0; c < channels; ++c) {
pos1[0] += pos2[0];
pos1 += input_depth * input_height * input_width;
pos2 += output_depth * output_height * output_width;
}
}
}
}
}
static void upsample_nearest3d_out_cpu_template(
Tensor& output,
const Tensor& input_,
IntArrayRef output_size) {
TORCH_CHECK(
output_size.size() == 3,
"It is expected output_size equals to 3, but got size ",
output_size.size());
int64_t output_depth = output_size[0];
int64_t output_height = output_size[1];
int64_t output_width = output_size[2];
int64_t nbatch = input_.size(0);
int64_t channels = input_.size(1);
int64_t input_depth = input_.size(2);
int64_t input_height = input_.size(3);
int64_t input_width = input_.size(4);
upsample_3d_shape_check(
input_,
Tensor(),
nbatch,
channels,
input_depth,
input_height,
input_width,
output_depth,
output_height,
output_width);
auto input = input_.contiguous();
output.resize_({nbatch, channels, output_depth, output_height, output_width});
output.zero_();
AT_ASSERT(
input_depth > 0 && input_height > 0 && input_width > 0 &&
output_depth > 0 && output_height > 0 && output_width > 0);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "upsample_nearest3d", [&] {
auto* idata = input.data_ptr<scalar_t>();
auto* odata = output.data_ptr<scalar_t>();
upsample_nearest3d_out_frame<scalar_t>(
odata,
idata,
input_depth,
input_height,
input_width,
output_depth,
output_height,
output_width,
nbatch,
channels);
});
}
static void upsample_nearest3d_backward_out_cpu_template(
Tensor& grad_input,
const Tensor& grad_output_,
IntArrayRef output_size,
IntArrayRef input_size) {
TORCH_CHECK(
output_size.size() == 3,
"It is expected output_size equals to 3, but got size ",
output_size.size());
TORCH_CHECK(
input_size.size() == 5,
"It is expected input_size equals to 5, but got size ",
input_size.size());
int64_t output_depth = output_size[0];
int64_t output_height = output_size[1];
int64_t output_width = output_size[2];
int64_t nbatch = input_size[0];
int64_t channels = input_size[1];
int64_t input_depth = input_size[2];
int64_t input_height = input_size[3];
int64_t input_width = input_size[4];
upsample_3d_shape_check(
Tensor(),
grad_output_,
nbatch,
channels,
input_depth,
input_height,
input_width,
output_depth,
output_height,
output_width);
grad_input.resize_(
{nbatch, channels, input_depth, input_height, input_width});
grad_input.zero_();
auto grad_output = grad_output_.contiguous();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad_output.scalar_type(), "upsample_nearest3d_backward", [&] {
scalar_t* idata = grad_input.data_ptr<scalar_t>();
scalar_t* odata = grad_output.data_ptr<scalar_t>();
upsample_nearest3d_backward_out_frame<scalar_t>(
odata,
idata,
input_depth,
input_height,
input_width,
output_depth,
output_height,
output_width,
nbatch,
channels);
});
}
} // namespace
Tensor& upsample_nearest3d_out_cpu(
Tensor& output,
const Tensor& input,
IntArrayRef output_size) {
upsample_nearest3d_out_cpu_template(output, input, output_size);
return output;
}
Tensor upsample_nearest3d_cpu(const Tensor& input, IntArrayRef output_size) {
auto output = at::empty({0}, input.options());
upsample_nearest3d_out_cpu_template(output, input, output_size);
return output;
}
Tensor& upsample_nearest3d_backward_out_cpu(
Tensor& grad_input,
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size) {
upsample_nearest3d_backward_out_cpu_template(
grad_input, grad_output, output_size, input_size);
return grad_input;
}
Tensor upsample_nearest3d_backward_cpu(
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size) {
auto grad_input = at::zeros(input_size, grad_output.options());
upsample_nearest3d_backward_out_cpu_template(
grad_input, grad_output, output_size, input_size);
return grad_input;
}
} // namespace native
} // namespace at