blob: bddb77c497796fc2dbf31976e67f604861c46401 [file] [log] [blame]
import re
import torch
from ..utils import is_per_tensor, is_per_channel
from torch.fx import GraphModule, map_arg
from torch.fx.graph import (
Graph,
Node,
)
from typing import Callable, Optional, List, Dict, Any, Set, Tuple, Union
from .quantization_types import QuantizerCls
# turn foo.bar -> ['foo', 'bar']
def _parent_name(target):
r = target.rsplit('.', 1)
if len(r) == 1:
return '', r[0]
else:
return r[0], r[1]
def graph_pretty_str(g, shorten=True) -> str:
"""Returns a printable representation of the ops in the graph of g.
If shorten is True, tries to abbreviate fields.
"""
built_in_func_re = re.compile('<built-in function (.*)>')
built_in_meth_re = re.compile('<built-in method (.*) of type.*>')
op_dict = {
'placeholder': 'plchdr',
'get_attr': 'gt_prm',
'call_function': 'cl_fun',
'call_module': 'cl_mod',
'call_method': 'cl_meth',
}
max_lens = {}
col_names = ("name", "op", "target", "args", "kwargs")
for s in col_names:
max_lens[s] = len(s)
results = []
for n in g.nodes:
# activation_post_process_0 -> obs_0
name = str(n.name)
if shorten:
name = name.replace("activation_post_process", "obs")
op = str(n.op)
# placeholder -> plchdr, and so on
if shorten and op in op_dict:
op = op_dict[op]
target = str(n.target)
# <built-in function foo> -> <bi_fun foo>, and so on
if shorten:
built_in_func = built_in_func_re.search(target)
if built_in_func:
target = f"<bi_fun {built_in_func.group(1)}>"
built_in_meth = built_in_meth_re.search(target)
if built_in_meth:
target = f"<bi_meth {built_in_meth.group(1)}>"
target = target.replace("activation_post_process", "obs")
args = str(n.args)
if shorten:
args = args.replace("activation_post_process", "obs")
kwargs = str(n.kwargs)
# calculate maximum length of each column, so we can tabulate properly
for k, v in zip(col_names, (name, op, target, args, kwargs)):
max_lens[k] = max(max_lens[k], len(v))
results.append([name, op, target, args, kwargs])
res_str = ""
format_str = "{:<{name}} {:<{op}} {:<{target}} {:<{args}} {:<{kwargs}}\n"
res_str += format_str.format(*col_names, **max_lens)
for result in results:
res_str += format_str.format(*result, **max_lens)
# print an exra note on abbreviations which change attribute names,
# since users will have to un-abbreviate for further debugging
if shorten:
res_str += "*obs_{n} = activation_post_process_{n}\n"
return res_str
def get_per_tensor_qparams(activation_post_process):
assert is_per_tensor(activation_post_process.qscheme), 'Only per tensor quantization is supported'
scale, zero_point = activation_post_process.calculate_qparams()
scale = float(scale)
zero_point = int(zero_point)
dtype = activation_post_process.dtype
return scale, zero_point, dtype
def get_quantize_node_info(activation_post_process: Callable) -> Tuple[str, Optional[Union[Callable, str]], Dict[str, Any]]:
''' Given an activation_post_process module,
return node_type(e.g. call_function), quantize op(e.g. quantize_per_tensor) and a dictionary
of extracted qparams from the module
'''
dtype = activation_post_process.dtype # type: ignore
quantize_op : Optional[Union[Callable, str]] = None
if dtype in [torch.quint8, torch.qint8]:
node_type = "call_function"
scale, zero_point = activation_post_process.calculate_qparams() # type: ignore
if is_per_channel(activation_post_process.qscheme): # type: ignore
ch_axis = int(activation_post_process.ch_axis) # type: ignore
qparams = {"_scale_": scale, "_zero_point_": zero_point, "_axis_": ch_axis, "_dtype_": dtype}
quantize_op = torch.quantize_per_channel
else:
scale = float(scale)
zero_point = int(zero_point)
qparams = {"_scale_": scale, "_zero_point_": zero_point, "_dtype_": dtype}
quantize_op = torch.quantize_per_tensor # type: ignore
elif dtype == torch.float16:
node_type = "call_method"
quantize_op = "to"
qparams = {"_dtype_": dtype}
return node_type, quantize_op, qparams
def quantize_node(quantizer, in_node, obs_module, obs_node, is_input):
''' Add quantization nodes (eg. quantize_per_tensor/per_channel) for given node to graph
with the qparams calculated from activation_post_process (obs_module).
The observer node (obs_node) is used to find the FQN of the user of act_post_process.
e.g. Given input `node` in `node = self.conv(x)`, insert node:
`quantized_node = torch.quantize_per_tensor(x, self._scale_0, self._zer_point_0, self._dtype_0)`
where self._scale_0, self._zero_point_0 and self._dtype_0 are
calculated from `obs_module`
'''
# Find the first use of the observer node, we use this to get the scope of the module.
if is_input:
# if the quantize function is at the input of op, then we find the first user of the observer_node
# to get the path
users = list(obs_node.users)
first_use = users[0] if users else None
prefix = "_input"
else:
# if the quantize function is at the output of the op, we use the observer input node to get the path
first_use = in_node
prefix = "_output"
if first_use:
module_path, _ = quantizer.node_name_to_scope[first_use.name]
else:
# TODO: it's not used, so actually we can skip quantization
# but this requires changing return type of quantize_node
# we can fix it later if needed
module_path = ""
root_module = quantizer.modules['']
graph = quantizer.quantized_graph
node_type, quantize_op, qparams = get_quantize_node_info(obs_module)
inputs = [in_node]
for key, value in qparams.items():
if key in ['_scale_', '_zero_point_']:
# For scale and zero_point values we register them as buffers in the root module.
qparam_node = create_getattr_from_value(root_module, graph, module_path + prefix + key, value)
inputs.append(qparam_node)
else:
get_new_attr_name = get_new_attr_name_with_prefix(module_path + prefix + key)
qparam_full_path = get_new_attr_name(root_module)
setattr(root_module, qparam_full_path, value)
inputs.append(graph.create_node('get_attr', qparam_full_path))
return graph.create_node(node_type, quantize_op, tuple(inputs), {})
def get_custom_module_class_keys(custom_config_dict, custom_config_dict_key) -> List[Any]:
r""" Get all the unique custom module keys in the custom config dict
e.g.
Input:
custom_config_dict = {
"float_to_observed_custom_module_class": {
"static": {
CustomModule1: ObservedCustomModule
},
"dynamic": {
CustomModule2: DynamicObservedCustomModule
},
"weight_only": {
CustomModule3: WeightOnlyObservedCustomModule
},
},
}
Output:
# extract all the keys in "static", "dynamic" and "weight_only" dict
[CustomModule1, CustomModule2, CustomModule3]
"""
# using set to dedup
float_custom_module_classes : Set[Any] = set()
custom_module_mapping = custom_config_dict.get(custom_config_dict_key, {})
for quant_mode in ["static", "dynamic", "weight_only"]:
quant_mode_custom_module_config = custom_module_mapping.get(quant_mode, {})
quant_mode_custom_module_classes = set(quant_mode_custom_module_config.keys())
float_custom_module_classes |= quant_mode_custom_module_classes
return list(float_custom_module_classes)
def get_linear_prepack_op_for_dtype(dtype):
if dtype == torch.float16:
return torch.ops.quantized.linear_prepack_fp16
elif dtype == torch.qint8:
return torch.ops.quantized.linear_prepack
else:
raise Exception("can't get linear prepack op for dtype:", dtype)
def get_qconv_prepack_op(conv_op: Callable) -> Callable:
prepack_ops = {
torch.nn.functional.conv1d: torch.ops.quantized.conv1d_prepack,
torch.nn.functional.conv2d: torch.ops.quantized.conv2d_prepack,
torch.nn.functional.conv3d: torch.ops.quantized.conv3d_prepack
}
prepack_op = prepack_ops.get(conv_op, None)
assert prepack_op, "Didn't find prepack op for {}".format(conv_op)
return prepack_op
def get_qconv_op(conv_op: Callable, has_relu: bool) -> Callable:
qconv_op = {
# has relu
True: {
torch.nn.functional.conv1d: torch.ops.quantized.conv1d_relu,
torch.nn.functional.conv2d: torch.ops.quantized.conv2d_relu,
torch.nn.functional.conv3d: torch.ops.quantized.conv3d_relu
},
False: {
torch.nn.functional.conv1d: torch.ops.quantized.conv1d,
torch.nn.functional.conv2d: torch.ops.quantized.conv2d,
torch.nn.functional.conv3d: torch.ops.quantized.conv3d
}
}
qconv = qconv_op[has_relu].get(conv_op)
assert qconv, "Can't find corresponding quantized conv op for {} {}".format(conv_op, has_relu)
return qconv
# Returns a function that can get a new attribute name for module with given
# prefix, for example,
# >> get_new_observer_name = get_new_attr_name_with_prefix('_observer')
# >> new_name = get_new_observer_name(module)
# new_name will be an unused attribute name on module, e.g. `_observer_1`
def get_new_attr_name_with_prefix(prefix: str) -> Callable:
prefix = prefix.replace(".", "_")
def get_new_attr_name(module: torch.nn.Module):
def get_attr_name(i: int):
return prefix + str(i)
i = 0
attr_name = get_attr_name(i)
while hasattr(module, attr_name):
i += 1
attr_name = get_attr_name(i)
return attr_name
return get_new_attr_name
def collect_producer_nodes(node: Node) -> Optional[List[Node]]:
r''' Starting from a target node, trace back until we hit inpu or
getattr node. This is used to extract the chain of operators
starting from getattr to the target node, for example
def forward(self, x):
observed = self.observer(self.weight)
return F.linear(x, observed)
collect_producer_nodes(observed) will either return a list of nodes that
produces the observed node or None if we can't extract a self contained
graph without free variables(inputs of the forward function).
'''
nodes = [node]
frontier = [node]
while frontier:
node = frontier.pop()
all_args = list(node.args) + list(node.kwargs.values())
for arg in all_args:
if not isinstance(arg, Node):
continue
if arg.op == 'placeholder':
# hit input, can't fold in this case
return None
nodes.append(arg)
if not (arg.op == 'call_function' and arg.target == getattr):
frontier.append(arg)
return nodes
def graph_module_from_producer_nodes(
root: GraphModule, producer_nodes: List[Node]) -> GraphModule:
r''' Construct a graph module from extracted producer nodes
from `collect_producer_nodes` function
Args:
root: the root module for the original graph
producer_nodes: a list of nodes we use to construct the graph
Return:
A graph module constructed from the producer nodes
'''
assert len(producer_nodes) > 0, 'list of producer nodes can not be empty'
# since we traced back from node to getattrr
producer_nodes.reverse()
graph = Graph()
env: Dict[Any, Any] = {}
def load_arg(a):
return map_arg(a, lambda node: env[node])
for producer_node in producer_nodes:
env[producer_node] = graph.node_copy(producer_node, load_arg)
graph.output(load_arg(producer_nodes[-1]))
graph_module = GraphModule(root, graph)
return graph_module
def assert_and_get_unique_device(module: torch.nn.Module) -> Any:
"""
Returns the unique device for a module, or None if no device is found.
Throws an error if multiple devices are detected.
"""
devices = {p.device for p in module.parameters()} | \
{p.device for p in module.buffers()}
assert len(devices) <= 1, (
"prepare only works with cpu or single-device CUDA modules, "
"but got devices {}".format(devices)
)
device = next(iter(devices)) if len(devices) > 0 else None
return device
def create_getattr_from_value(module: GraphModule, graph: Graph, prefix: str, value: Any) -> Node:
"""
Given a value of any type, creates a getattr node corresponding to the value and
registers the value as a buffer to the module.
"""
get_new_attr_name = get_new_attr_name_with_prefix(prefix)
attr_name = get_new_attr_name(module)
module.register_buffer(attr_name, torch.tensor(value))
# Create get_attr with value
attr_node = graph.create_node("get_attr", attr_name)
return attr_node
def create_qparam_nodes(quantizer: QuantizerCls, node_name: str, scale: Any, zero_point: Any) -> Tuple[Node, Node]:
"""
Create getattr nodes in the quantizer graph for scale and zero point values.
The nodes are registered with the root_module of the model.
"""
root_module = quantizer.modules['']
module_path, _ = quantizer.node_name_to_scope[node_name]
scale_node = create_getattr_from_value(root_module, quantizer.quantized_graph, (module_path + "_scale_"), scale)
zero_point_node = create_getattr_from_value(root_module, quantizer.quantized_graph, (module_path + "_zero_point_"), zero_point)
return (scale_node, zero_point_node)
def all_node_args_have_no_tensors(node: Node) -> bool:
"""
If we know for sure that all of this node's args have no
tensors (are primitives), return True. If we either
find a tensor or are not sure, return False. Note: this
function is not exact.
"""
if not isinstance(node, Node):
return True
elif node.op == 'placeholder':
return False
elif node.op == 'call_module':
return False
elif node.op == 'get_attr':
return False
elif node.target is getattr and node.args[1] == 'ndim':
# x1 = x0.ndim
return True
elif node.op == 'call_method' and node.target == 'size':
# x1 = x0.size(0)
return True
found_one_tensor = False
for arg in node.args:
if isinstance(arg, list):
for list_el in arg:
if isinstance(list_el, Node):
this_list_el_args_have_no_tensors = \
all_node_args_have_no_tensors(list_el)
found_one_tensor = found_one_tensor or \
(not this_list_el_args_have_no_tensors)
elif isinstance(arg, int):
pass
else:
if isinstance(arg, Node):
this_arg_args_have_no_tensors = all_node_args_have_no_tensors(arg)
found_one_tensor = found_one_tensor or \
(not this_arg_args_have_no_tensors)
else:
found_one_tensor = True
return not found_one_tensor
def node_return_type_is_int(node: Node) -> bool:
"""
Returns true if this node results in an integer, even if some of the args
are Tensors.
"""
if node.op == 'call_method' and node.target == 'size':
return True
return False