| #!/usr/bin/env python3 |
| |
| # Copyright (c) Facebook, Inc. and its affiliates. |
| # All rights reserved. |
| # |
| # This source code is licensed under the BSD-style license found in the |
| # LICENSE file in the root directory of this source tree. |
| |
| import abc |
| import logging |
| import os |
| import re |
| import signal |
| import subprocess |
| import sys |
| import time |
| from contextlib import AbstractContextManager |
| from dataclasses import dataclass, field |
| from enum import IntFlag |
| from typing import Any, Callable, Dict, Optional, Set, Tuple, Union |
| |
| import torch.multiprocessing as mp |
| from torch.distributed.elastic.multiprocessing.errors import ProcessFailure, record |
| from torch.distributed.elastic.multiprocessing.redirects import ( |
| redirect_stderr, |
| redirect_stdout, |
| ) |
| from torch.distributed.elastic.multiprocessing.tail_log import TailLog |
| |
| |
| log = logging.getLogger(__name__) |
| |
| |
| def _validate_full_rank(d: Dict[int, Any], nprocs: int, what: str): |
| actual_keys = set(d.keys()) |
| expected_keys = set(range(nprocs)) |
| |
| if actual_keys != expected_keys: |
| raise RuntimeError( |
| f"{what}, local rank mapping mismatch," |
| f" expected: {expected_keys}, actual: {actual_keys}" |
| ) |
| |
| |
| _MAPPING_REGEX = r"^(\d:[0123],)*(\d:[0123])$" |
| _VALUE_REGEX = r"^[0123]$" |
| |
| |
| class Std(IntFlag): |
| NONE = 0 |
| OUT = 1 |
| ERR = 2 |
| ALL = OUT | ERR |
| |
| @classmethod |
| def from_str(cls, vm: str) -> Union["Std", Dict[int, "Std"]]: |
| """ |
| Example: |
| |
| :: |
| |
| from_str("0") -> Std.NONE |
| from_str("1") -> Std.OUT |
| from_str("0:3,1:0,2:1,3:2") -> {0: Std.ALL, 1: Std.NONE, 2: Std.OUT, 3: Std.ERR} |
| |
| Any other input raises an exception |
| """ |
| |
| def to_std(v): |
| v = int(v) |
| for s in Std: |
| if s == v: |
| return s |
| # return None -> should NEVER reach here since we regex check input |
| |
| if re.match(_VALUE_REGEX, vm): # vm is a number (e.g. 0) |
| return to_std(vm) |
| elif re.match(_MAPPING_REGEX, vm): # vm is a mapping (e.g. 0:1,1:2) |
| d: Dict[int, Std] = {} |
| for m in vm.split(","): |
| i, v = m.split(":") |
| d[int(i)] = to_std(v) |
| return d |
| else: |
| raise ValueError( |
| f"{vm} does not match: <{_VALUE_REGEX}> or <{_MAPPING_REGEX}>" |
| ) |
| |
| |
| def to_map( |
| val_or_map: Union[Std, Dict[int, Std]], local_world_size: int |
| ) -> Dict[int, Std]: |
| """ |
| Certain APIs take redirect settings either as a single value (e.g. apply to all |
| local ranks) or as an explicit user-provided mapping. This method is a convenience |
| method that converts a value or mapping into a mapping. |
| |
| Example: |
| |
| :: |
| |
| to_map(Std.OUT, local_world_size=2) # returns: {0: Std.OUT, 1: Std.OUT} |
| to_map({1: Std.OUT}, local_world_size=2) # returns: {0: Std.NONE, 1: Std.OUT} |
| to_map({0: Std.OUT, 1: Std.OUT}, local_world_size=2) # returns: {0: Std.OUT, 1: Std.OUT} |
| """ |
| if isinstance(val_or_map, Std): |
| return {i: val_or_map for i in range(local_world_size)} |
| else: |
| map = {} |
| for i in range(local_world_size): |
| map[i] = val_or_map.get(i, Std.NONE) |
| return map |
| |
| |
| @dataclass |
| class RunProcsResult: |
| """ |
| Results of a completed run of processes started with ``start_processes()``. |
| Returned by ``PContext``. |
| |
| Note the following: |
| |
| 1. All fields are mapped by local rank |
| 2. ``return_values`` - only populated for functions (not the binaries). |
| 3. ``stdouts`` - path to stdout.log (empty string if no redirect) |
| 4. ``stderrs`` - path to stderr.log (empty string if no redirect) |
| |
| """ |
| |
| return_values: Dict[int, Any] = field(default_factory=dict) |
| failures: Dict[int, ProcessFailure] = field(default_factory=dict) |
| stdouts: Dict[int, str] = field(default_factory=dict) |
| stderrs: Dict[int, str] = field(default_factory=dict) |
| |
| def is_failed(self) -> bool: |
| return len(self.failures) > 0 |
| |
| |
| class PContext(abc.ABC): |
| """ |
| The base class that standardizes operations over a set of processes |
| that are launched via different mechanisms. The name ``PContext`` |
| is intentional to disambiguate with ``torch.multiprocessing.ProcessContext``. |
| |
| .. warning:: stdouts and stderrs should ALWAYS be a superset of |
| tee_stdouts and tee_stderrs (respectively) this is b/c |
| tee is implemented as a redirect + tail -f <stdout/stderr.log> |
| """ |
| |
| def __init__( |
| self, |
| name: str, |
| entrypoint: Union[Callable, str], |
| args: Dict[int, Tuple], |
| envs: Dict[int, Dict[str, str]], |
| stdouts: Dict[int, str], |
| stderrs: Dict[int, str], |
| tee_stdouts: Dict[int, str], |
| tee_stderrs: Dict[int, str], |
| error_files: Dict[int, str], |
| ): |
| self.name = name |
| # validate that all mappings have the same number of keys and |
| # all local ranks are accounted for |
| nprocs = len(args) |
| _validate_full_rank(stdouts, nprocs, "stdouts") |
| _validate_full_rank(stderrs, nprocs, "stderrs") |
| |
| self.entrypoint = entrypoint |
| self.args = args |
| self.envs = envs |
| self.stdouts = stdouts |
| self.stderrs = stderrs |
| self.error_files = error_files |
| self.nprocs = nprocs |
| |
| self._stdout_tail = TailLog(name, tee_stdouts, sys.stdout) |
| self._stderr_tail = TailLog(name, tee_stderrs, sys.stderr) |
| |
| def start(self) -> None: |
| """ |
| Start processes using parameters defined in the constructor. |
| """ |
| self._start() |
| self._stdout_tail.start() |
| self._stderr_tail.start() |
| |
| @abc.abstractmethod |
| def _start(self) -> None: |
| """ |
| Start processes using strategy defined in a particular context. |
| """ |
| raise NotImplementedError() |
| |
| @abc.abstractmethod |
| def _poll(self) -> Optional[RunProcsResult]: |
| """ |
| Polls the run status of the processes running under this context. |
| This method follows an "all-or-nothing" policy and returns |
| a ``RunProcessResults`` object if either all processes complete |
| successfully or any process fails. Returns ``None`` if |
| all processes are still running. |
| """ |
| raise NotImplementedError() |
| |
| def wait(self, timeout: float = -1, period: float = 1) -> Optional[RunProcsResult]: |
| """ |
| Waits for the specified ``timeout`` seconds, polling every ``period`` seconds |
| for the processes to be done. Returns ``None`` if the processes are still running |
| on timeout expiry. Negative timeout values are interpreted as "wait-forever". |
| A timeout value of zero simply queries the status of the processes (e.g. equivalent |
| to a poll). |
| """ |
| |
| if timeout == 0: |
| return self._poll() |
| |
| if timeout < 0: |
| timeout = sys.maxsize |
| |
| expiry = time.time() + timeout |
| while time.time() < expiry: |
| pr = self._poll() |
| if pr: |
| return pr |
| time.sleep(period) |
| |
| return None |
| |
| @abc.abstractmethod |
| def pids(self) -> Dict[int, int]: |
| """ |
| Returns pids of processes mapped by their respective local_ranks |
| """ |
| raise NotImplementedError() |
| |
| @abc.abstractmethod |
| def _close(self) -> None: |
| r""" |
| Terminates all processes managed by this context and cleans up any |
| meta resources (e.g. redirect, error_file files). |
| """ |
| raise NotImplementedError() |
| |
| def close(self) -> None: |
| self._close() |
| if self._stdout_tail: |
| self._stdout_tail.stop() |
| if self._stderr_tail: |
| self._stderr_tail.stop() |
| |
| |
| class _nullcontext(AbstractContextManager): |
| # TODO remove and replace in favor of contextlib.nullcontext |
| # when torch drops support for python3.6 |
| def __init__(self, enter_result=None): |
| self.enter_result = enter_result |
| |
| def __enter__(self): |
| return self.enter_result |
| |
| def __exit__(self, *excinfo): |
| pass |
| |
| |
| def _wrap( |
| local_rank: int, |
| fn: Callable, |
| args: Dict[int, Tuple], |
| envs: Dict[int, Dict[str, str]], |
| stdout_redirects: Dict[int, str], # redirect file for stdout (to console if None) |
| stderr_redirects: Dict[int, str], # redirect file for stderr (to console if None) |
| ret_vals: Dict[int, mp.SimpleQueue], |
| ) -> None: |
| # get the per-rank params up front so we fail fast if no mapping is found |
| args_ = args[local_rank] |
| env_ = envs[local_rank] |
| ret_val_ = ret_vals[local_rank] |
| |
| stdout_rd = stdout_redirects[local_rank] |
| stderr_rd = stderr_redirects[local_rank] |
| |
| stdout_cm = redirect_stdout(stdout_rd) if stdout_rd else _nullcontext() |
| stderr_cm = redirect_stderr(stderr_rd) if stderr_rd else _nullcontext() |
| |
| for k, v in env_.items(): |
| os.environ[k] = v |
| |
| with stdout_cm, stderr_cm: |
| ret = record(fn)(*args_) |
| ret_val_.put(ret) |
| |
| |
| class MultiprocessContext(PContext): |
| """ |
| ``PContext`` holding worker processes invoked as a function. |
| """ |
| |
| def __init__( |
| self, |
| name: str, |
| entrypoint: Callable, |
| args: Dict[int, Tuple], |
| envs: Dict[int, Dict[str, str]], |
| stdouts: Dict[int, str], |
| stderrs: Dict[int, str], |
| tee_stdouts: Dict[int, str], |
| tee_stderrs: Dict[int, str], |
| error_files: Dict[int, str], |
| start_method: str, |
| ): |
| super().__init__( |
| name, |
| entrypoint, |
| args, |
| envs, |
| stdouts, |
| stderrs, |
| tee_stdouts, |
| tee_stderrs, |
| error_files, |
| ) |
| |
| self.start_method = start_method |
| # each ret_val queue will always contain a single element. |
| self._ret_vals = { |
| local_rank: mp.get_context(self.start_method).SimpleQueue() |
| for local_rank in range(self.nprocs) |
| } |
| |
| # see comments in ``join()`` for what this is |
| self._return_values: Dict[int, Any] = {} |
| self._pc: Optional[mp.ProcessContext] = None |
| |
| def _start(self): |
| if self._pc: |
| raise ValueError( |
| "The process context already initialized." |
| " Most likely the start method got called twice." |
| ) |
| self._pc = mp.start_processes( |
| fn=_wrap, |
| args=( |
| self.entrypoint, |
| self.args, |
| self.envs, |
| self.stdouts, |
| self.stderrs, |
| self._ret_vals, |
| ), |
| nprocs=self.nprocs, |
| join=False, |
| daemon=False, |
| start_method=self.start_method, |
| ) |
| |
| def _poll(self) -> Optional[RunProcsResult]: |
| assert self._pc is not None # assertion for mypy type checker |
| |
| try: |
| # torch.mp.ProcessContext returns True if all the workers have |
| # successfully finished, False if some/all are still running |
| # and throws an Exception if some/all of them failed |
| # timeout < 0 checks worker status and return immediately |
| done = self._pc.join(-1) |
| |
| # IMPORTANT: we use multiprocessing.Queue to carry worker return values |
| # back to the parent, the worker process will wait before terminating |
| # until all the buffered items are fed by the feeder thread to the underlying |
| # pipe. Hence to prevent deadlocks on large return values, |
| # we opportunistically try queue.get on each join call |
| # See: https://docs.python.org/2/library/multiprocessing.html#all-platforms |
| for local_rank in range(0, self.nprocs): |
| return_queue = self._ret_vals[local_rank] |
| if not return_queue.empty(): |
| # save the return values temporarily into a member var |
| self._return_values[local_rank] = return_queue.get() |
| |
| if done: |
| # we should ALWAYS have ALL the return values when all the processes are done |
| _validate_full_rank( |
| self._return_values, self.nprocs, "return_value queue" |
| ) |
| self.close() |
| return RunProcsResult( |
| return_values=self._return_values, |
| stdouts=self.stdouts, |
| stderrs=self.stderrs, |
| ) |
| else: |
| return None |
| except (mp.ProcessRaisedException, mp.ProcessExitedException) as e: |
| failed_local_rank = e.error_index |
| |
| # entrypoint for MultiprocessContext will always be a Callable |
| fn_name = self.entrypoint.__qualname__ # type: ignore[union-attr] |
| failed_proc = self._pc.processes[failed_local_rank] |
| error_filepath = self.error_files[failed_local_rank] |
| |
| log.error( |
| f"failed (exitcode: {failed_proc.exitcode})" |
| f" local_rank: {failed_local_rank} (pid: {e.pid})" |
| f" of fn: {fn_name} (start_method: {self.start_method})", |
| exc_info=True, |
| ) |
| |
| self.close() |
| return RunProcsResult( |
| failures={ |
| failed_local_rank: ProcessFailure( |
| local_rank=failed_local_rank, |
| pid=e.pid, |
| exitcode=failed_proc.exitcode, |
| error_file=error_filepath, |
| ) |
| }, |
| stdouts=self.stdouts, |
| stderrs=self.stderrs, |
| ) |
| |
| def pids(self) -> Dict[int, int]: |
| assert self._pc is not None # assertion for mypy type checking |
| return {local_rank: pid for local_rank, pid in enumerate(self._pc.pids())} |
| |
| def _close(self) -> None: |
| if self._pc: |
| for proc in self._pc.processes: |
| proc.terminate() |
| proc.join() |
| |
| |
| class SubprocessHandler: |
| """ |
| Convenience wrapper around python's ``subprocess.Popen``. Keeps track of |
| meta-objects associated to the process (e.g. stdout and stderr redirect fds). |
| """ |
| |
| def __init__( |
| self, |
| entrypoint: str, |
| args: Tuple, |
| env: Dict[str, str], |
| preexec_fn: Callable, |
| stdout: str, |
| stderr: str, |
| ): |
| self._stdout = open(stdout, "w") if stdout else None |
| self._stderr = open(stderr, "w") if stderr else None |
| args_str = [str(e) for e in args] |
| |
| # inherit parent environment vars |
| env_vars = os.environ.copy() |
| env_vars.update(env) |
| |
| self.proc: subprocess.Popen = subprocess.Popen( |
| # pyre-fixme[6]: Expected `Union[typing.Sequence[Union[_PathLike[bytes], |
| # _PathLike[str], bytes, str]], bytes, str]` for 1st param but got |
| # `Tuple[str, *Tuple[Any, ...]]`. |
| args=(entrypoint, *args_str), |
| env=env_vars, |
| preexec_fn=preexec_fn, |
| stdout=self._stdout, |
| stderr=self._stderr, |
| ) |
| |
| def close(self): |
| self.proc.terminate() |
| self.proc.wait() |
| if self._stdout: |
| self._stdout.close() |
| if self._stderr: |
| self._stderr.close() |
| |
| |
| class SubprocessContext(PContext): |
| """ |
| ``PContext`` holding worker processes invoked as a binary. |
| """ |
| |
| def __init__( |
| self, |
| name: str, |
| entrypoint: str, |
| args: Dict[int, Tuple], |
| envs: Dict[int, Dict[str, str]], |
| stdouts: Dict[int, str], |
| stderrs: Dict[int, str], |
| tee_stdouts: Dict[int, str], |
| tee_stderrs: Dict[int, str], |
| error_files: Dict[int, str], |
| ): |
| super().__init__( |
| name, |
| entrypoint, |
| args, |
| envs, |
| stdouts, |
| stderrs, |
| tee_stdouts, |
| tee_stderrs, |
| error_files, |
| ) |
| |
| # state vector; _vdone[local_rank] -> is local_rank finished or not |
| self._running_local_ranks: Set[int] = set(range(self.nprocs)) |
| self._failures: Dict[int, ProcessFailure] = {} |
| self.subprocess_handlers: Dict[int, SubprocessHandler] = {} |
| |
| def _start(self): |
| if self.subprocess_handlers: |
| raise ValueError( |
| "The subprocess handlers already initialized. Most likely the start method got called twice." |
| ) |
| self.subprocess_handlers = { |
| local_rank: SubprocessHandler( |
| entrypoint=self.entrypoint, # type: ignore[arg-type] # entrypoint is always a str |
| args=self.args[local_rank], |
| env=self.envs[local_rank], |
| preexec_fn=mp._prctl_pr_set_pdeathsig(signal.SIGTERM), # type: ignore[attr-defined] |
| stdout=self.stdouts[local_rank], |
| stderr=self.stderrs[local_rank], |
| ) |
| for local_rank in range(self.nprocs) |
| } |
| |
| def _poll(self) -> Optional[RunProcsResult]: |
| done_local_ranks = set() |
| for local_rank in self._running_local_ranks: |
| handler = self.subprocess_handlers[local_rank] |
| exitcode = handler.proc.poll() |
| if exitcode is not None: |
| done_local_ranks.add(local_rank) |
| if exitcode != 0: # failed or signaled |
| self._failures[local_rank] = ProcessFailure( |
| local_rank=local_rank, |
| pid=handler.proc.pid, |
| exitcode=exitcode, |
| error_file=self.error_files[local_rank], |
| ) |
| # else: --> succeeded; nothing to do |
| |
| self._running_local_ranks.difference_update(done_local_ranks) |
| |
| # if ALL procs are finished or ANY have failed |
| if not self._running_local_ranks or self._failures: |
| self.close() # terminate all running procs |
| result = RunProcsResult( |
| failures=self._failures, |
| stdouts=self.stdouts, |
| stderrs=self.stderrs, |
| ) |
| if result.is_failed(): |
| first_failure = min(result.failures.values(), key=lambda f: f.timestamp) |
| log.error( |
| f"failed (exitcode: {first_failure.exitcode})" |
| f" local_rank: {first_failure.local_rank} (pid: {first_failure.pid})" |
| f" of binary: {self.entrypoint}" |
| ) |
| else: |
| # Populate return with dummy values. This provides consistency with MultiprocessingHandler |
| result.return_values = { |
| local_rank: None for local_rank in range(self.nprocs) |
| } |
| |
| return result |
| else: # there are no failures and procs still running |
| return None |
| |
| def pids(self) -> Dict[int, int]: |
| return { |
| local_rank: sh.proc.pid |
| for local_rank, sh in self.subprocess_handlers.items() |
| } |
| |
| def _close(self) -> None: |
| if self.subprocess_handlers: |
| for handler in self.subprocess_handlers.values(): |
| handler.close() |