blob: 15a4964d6b58265264eb772066c72aae398ec290 [file] [log] [blame]
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/thresholded_relu_op.h"
namespace caffe2 {
namespace {
template <typename T>
__global__ void ThresholdedReluKernel(const int N, const T* X, T* Y, T alpha_) {
CUDA_1D_KERNEL_LOOP(i, N) {
Y[i] = X[i] > alpha_ ? X[i] : 0;
}
}
template <typename T>
__global__ void
ThresholdedReluGradientKernel(const int N, const T* Y, const T* dY, T* dX) {
CUDA_1D_KERNEL_LOOP(i, N) {
dX[i] = Y[i] > 0 ? dY[i] : 0;
}
}
} // namespace
template <>
bool ThresholdedReluOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0);
CAFFE_ENFORCE_GT(X.numel(), 0);
auto* Y = Output(0, X.sizes(), at::dtype<float>());
ThresholdedReluKernel<<<
CAFFE_GET_BLOCKS(X.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
X.numel(), X.data<float>(), Y->template mutable_data<float>(), alpha_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template <>
bool ThresholdedReluGradientOp<float, CUDAContext>::RunOnDevice() {
auto& Y = Input(0);
auto& dY = Input(1);
CAFFE_ENFORCE_GT(Y.numel(), 0);
CAFFE_ENFORCE_EQ(dY.numel(), Y.numel());
auto* dX = Output(0, Y.sizes(), at::dtype<float>());
ThresholdedReluGradientKernel<<<
CAFFE_GET_BLOCKS(Y.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
Y.numel(),
Y.data<float>(),
dY.data<float>(),
dX->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(ThresholdedRelu, ThresholdedReluOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
ThresholdedReluGradient,
ThresholdedReluGradientOp<float, CUDAContext>);
} // namespace caffe2