| #include "caffe2/core/context_gpu.h" |
| #include "caffe2/operators/thresholded_relu_op.h" |
| |
| namespace caffe2 { |
| namespace { |
| template <typename T> |
| __global__ void ThresholdedReluKernel(const int N, const T* X, T* Y, T alpha_) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| Y[i] = X[i] > alpha_ ? X[i] : 0; |
| } |
| } |
| |
| template <typename T> |
| __global__ void |
| ThresholdedReluGradientKernel(const int N, const T* Y, const T* dY, T* dX) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| dX[i] = Y[i] > 0 ? dY[i] : 0; |
| } |
| } |
| } // namespace |
| |
| template <> |
| bool ThresholdedReluOp<float, CUDAContext>::RunOnDevice() { |
| auto& X = Input(0); |
| |
| CAFFE_ENFORCE_GT(X.numel(), 0); |
| auto* Y = Output(0, X.sizes(), at::dtype<float>()); |
| ThresholdedReluKernel<<< |
| CAFFE_GET_BLOCKS(X.numel()), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| X.numel(), X.data<float>(), Y->template mutable_data<float>(), alpha_); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| |
| return true; |
| } |
| |
| template <> |
| bool ThresholdedReluGradientOp<float, CUDAContext>::RunOnDevice() { |
| auto& Y = Input(0); |
| auto& dY = Input(1); |
| |
| CAFFE_ENFORCE_GT(Y.numel(), 0); |
| CAFFE_ENFORCE_EQ(dY.numel(), Y.numel()); |
| auto* dX = Output(0, Y.sizes(), at::dtype<float>()); |
| ThresholdedReluGradientKernel<<< |
| CAFFE_GET_BLOCKS(Y.numel()), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| Y.numel(), |
| Y.data<float>(), |
| dY.data<float>(), |
| dX->template mutable_data<float>()); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| |
| return true; |
| } |
| |
| REGISTER_CUDA_OPERATOR(ThresholdedRelu, ThresholdedReluOp<float, CUDAContext>); |
| REGISTER_CUDA_OPERATOR( |
| ThresholdedReluGradient, |
| ThresholdedReluGradientOp<float, CUDAContext>); |
| } // namespace caffe2 |