| #include "caffe2/operators/tan_op.h" |
| |
| #include <algorithm> |
| #include <functional> |
| |
| #include "caffe2/core/context_gpu.h" |
| |
| namespace caffe2 { |
| |
| template <typename T> |
| inline __host__ __device__ T Square(const T& x) { |
| return x * x; |
| } |
| |
| template <typename T> |
| __global__ void |
| TanGradientCUDAKernel(const int N, const T* dY, const T* X, T* dX) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| #if __CUDA_ARCH__ >= 350 |
| dX[i] = __ldg(dY + i) / Square(cos(__ldg(X + i))); |
| #else |
| dX[i] = dY[i] / Square(cos(X[i])); |
| #endif |
| } |
| } |
| |
| template <> |
| template <typename T> |
| bool TanGradientFunctor<CUDAContext>::Forward( |
| const std::vector<int>& X_dims, |
| const std::vector<int>& /* dY_dims */, |
| const T* X, |
| const T* dY, |
| T* dX, |
| CUDAContext* context) const { |
| const int size = std::accumulate( |
| X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); |
| TanGradientCUDAKernel<T> |
| <<<CAFFE_GET_BLOCKS(size), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(size, dY, X, dX); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| |
| return true; |
| } |
| |
| REGISTER_CUDA_OPERATOR( |
| Tan, |
| UnaryElementwiseOp< |
| TensorTypes<float>, |
| CUDAContext, |
| TanFunctor<CUDAContext>>); |
| REGISTER_CUDA_OPERATOR( |
| TanGradient, |
| BinaryElementwiseOp< |
| TensorTypes<float>, |
| CUDAContext, |
| TanGradientFunctor<CUDAContext>>); |
| |
| } // namespace caffe2 |