| #pragma once |
| |
| #include "caffe2/core/operator.h" |
| #include "caffe2/utils/eigen_utils.h" |
| #include "caffe2/utils/math.h" |
| |
| namespace caffe2 { |
| |
| template <typename T, class Context> |
| class EnsureClippedOp final : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| |
| template <class... Args> |
| explicit EnsureClippedOp(Args&&... args) |
| : Operator<Context>(std::forward<Args>(args)...), |
| min_(std::numeric_limits<T>::lowest()), |
| max_(std::numeric_limits<T>::max()) { |
| if (HasArgument("min")) { |
| min_ = static_cast<T>(this->template GetSingleArgument<float>("min", 0)); |
| } |
| if (HasArgument("max")) { |
| max_ = static_cast<T>(this->template GetSingleArgument<float>("max", 0)); |
| } |
| } |
| |
| bool RunOnDevice() override { |
| if (InputSize() > INDICES) { |
| // spares gradient, selective checking clipping |
| CAFFE_ENFORCE_EQ( |
| Input(PARAM).size_from_dim(1), |
| Input(GRAD).size_from_dim(Input(INDICES).dim())); |
| return DispatchHelper<TensorTypes<int32_t, int64_t>>::call( |
| this, Input(INDICES)); |
| } else { |
| auto& X = Input(PARAM); |
| |
| auto* Y = Output(OUTPUT_PARAM, X.sizes(), at::dtype<float>()); |
| EigenVectorMap<float>(Y->template mutable_data<float>(), Y->numel()) = |
| ConstEigenVectorMap<float>(X.template data<float>(), X.numel()) |
| .cwiseMax(min_) |
| .cwiseMin(max_); |
| return true; |
| } |
| } |
| |
| template <typename SIndex> |
| bool DoRunWithType(); |
| |
| protected: |
| T min_; |
| T max_; |
| INPUT_TAGS(PARAM, INDICES, GRAD); |
| OUTPUT_TAGS(OUTPUT_PARAM); |
| }; |
| |
| } // namespace caffe2 |