| from typing import Tuple, List, Dict |
| |
| import torch |
| import torch.nn as nn |
| from torch import Tensor |
| |
| |
| class Simple(torch.nn.Module): |
| def __init__(self, N, M): |
| super().__init__() |
| self.weight = torch.nn.Parameter(torch.rand(N, M)) |
| |
| def forward(self, input): |
| output = self.weight + input |
| return output |
| |
| |
| def load_library(): |
| torch.ops.load_library("my_so.so") |
| |
| |
| def conv1x1(in_planes, out_planes, stride=1): |
| """1x1 convolution""" |
| return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
| |
| |
| def conv3x3(in_planes, out_planes, stride=1): |
| """3x3 convolution with padding""" |
| return nn.Conv2d( |
| in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False |
| ) |
| |
| |
| class BasicBlock(nn.Module): |
| expansion = 1 |
| |
| def __init__(self, inplanes, planes, stride=1, downsample=None): |
| super(BasicBlock, self).__init__() |
| self.conv1 = conv3x3(inplanes, planes, stride) |
| self.bn1 = nn.BatchNorm2d(planes) |
| self.relu = nn.ReLU(inplace=True) |
| self.conv2 = conv3x3(planes, planes) |
| self.bn2 = nn.BatchNorm2d(planes) |
| self.downsample = downsample |
| self.stride = stride |
| |
| def forward(self, x): |
| residual = x |
| |
| out = self.conv1(x) |
| out = self.bn1(out) |
| out = self.relu(out) |
| |
| out = self.conv2(out) |
| out = self.bn2(out) |
| |
| if self.downsample is not None: |
| residual = self.downsample(x) |
| |
| out += residual |
| out = self.relu(out) |
| |
| return out |
| |
| |
| class ResNet(nn.Module): |
| def __init__(self, block, layers, num_classes=1000): |
| super(ResNet, self).__init__() |
| self.inplanes = 64 |
| self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
| self.bn1 = nn.BatchNorm2d(64) |
| self.relu = nn.ReLU(inplace=True) |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
| self.layer1 = self._make_layer(block, 64, layers[0]) |
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
| self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
| self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
| self.fc = nn.Linear(512 * block.expansion, num_classes) |
| |
| for m in self.modules(): |
| if isinstance(m, nn.Conv2d): |
| nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
| elif isinstance(m, nn.BatchNorm2d): |
| nn.init.constant_(m.weight, 1) |
| nn.init.constant_(m.bias, 0) |
| |
| def _make_layer(self, block, planes, blocks, stride=1): |
| downsample = None |
| if stride != 1 or self.inplanes != planes * block.expansion: |
| downsample = nn.Sequential( |
| conv1x1(self.inplanes, planes * block.expansion, stride), |
| nn.BatchNorm2d(planes * block.expansion), |
| ) |
| |
| layers = [] |
| layers.append(block(self.inplanes, planes, stride, downsample)) |
| self.inplanes = planes * block.expansion |
| for _ in range(1, blocks): |
| layers.append(block(self.inplanes, planes)) |
| |
| return nn.Sequential(*layers) |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| x = self.bn1(x) |
| x = self.relu(x) |
| x = self.maxpool(x) |
| |
| x = self.layer1(x) |
| x = self.layer2(x) |
| x = self.layer3(x) |
| x = self.layer4(x) |
| |
| x = self.avgpool(x) |
| x = x.view(x.size(0), -1) |
| x = self.fc(x) |
| |
| return x |
| |
| |
| def resnet18(): |
| return ResNet(BasicBlock, [2, 2, 2, 2]) |
| |
| |
| class BatchedModel(nn.Module): |
| def forward(self, input1: Tensor, input2: Tensor) -> Tuple[Tensor, Tensor]: |
| return (input1 * -1, input2 * -1) |
| |
| def make_prediction( |
| self, input: List[Tuple[Tensor, Tensor]] |
| ) -> List[Tuple[Tensor, Tensor]]: |
| return [self.forward(i[0], i[1]) for i in input] |
| |
| def make_batch( |
| self, mega_batch: List[Tuple[Tensor, Tensor, int]], goals: Dict[str, str] |
| ) -> List[List[Tuple[Tensor, Tensor, int]]]: |
| max_bs = int(goals["max_bs"]) |
| return [ |
| mega_batch[start_idx : start_idx + max_bs] |
| for start_idx in range(0, len(mega_batch), max_bs) |
| ] |
| |
| |
| class MultiReturn(torch.nn.Module): |
| def __init__(self): |
| super(MultiReturn, self).__init__() |
| |
| def forward(self, t): |
| # type: (Tuple[Tensor, Tensor]) -> Tuple[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor]] |
| a, b = t |
| result = ((a.masked_fill_(b, 0.1), b), (torch.ones_like(a), b)) |
| return result |
| |
| |
| multi_return_metadata = r""" |
| { |
| "metadata_container": { |
| "forward": { |
| "named_input_metadata": { |
| "t": { |
| "argument_type": { |
| "tuple": { |
| "tuple_elements": [ |
| { |
| "tensor": 1 |
| }, |
| { |
| "tensor": 6 |
| } |
| ] |
| } |
| }, |
| "optional_argument": false, |
| "metadata": { |
| "dense_features": { |
| "feature_desc": [ |
| { |
| "feature_name": "test_feature_1", |
| "feature_id": 1 |
| } |
| ], |
| "expected_shape": { |
| "dims": [ |
| -1, |
| 1 |
| ], |
| "unknown_rank": false |
| }, |
| "data_type": 1, |
| "feature_store_feature_type": 0 |
| } |
| } |
| } |
| }, |
| "positional_output_metadata": [ |
| { |
| "argument_type": { |
| "tuple": { |
| "tuple_elements": [ |
| { |
| "tensor": 1 |
| }, |
| { |
| "tensor": 6 |
| } |
| ] |
| } |
| }, |
| "optional_argument": false, |
| "metadata": { |
| "dense_features": { |
| "feature_desc": [ |
| { |
| "feature_name": "test_feature_1", |
| "feature_id": 1 |
| } |
| ], |
| "expected_shape": { |
| "dims": [ |
| -1, |
| 1 |
| ], |
| "unknown_rank": false |
| }, |
| "data_type": 1, |
| "feature_store_feature_type": 0 |
| } |
| } |
| }, |
| { |
| "argument_type": { |
| "tuple": { |
| "tuple_elements": [ |
| { |
| "tensor": 1 |
| }, |
| { |
| "tensor": 6 |
| } |
| ] |
| } |
| }, |
| "optional_argument": false, |
| "metadata": { |
| "dense_features": { |
| "feature_desc": [ |
| { |
| "feature_name": "test_feature_3", |
| "feature_id": 3 |
| } |
| ], |
| "expected_shape": { |
| "dims": [ |
| -1, |
| 1 |
| ], |
| "unknown_rank": false |
| }, |
| "data_type": 1, |
| "feature_store_feature_type": 0 |
| } |
| } |
| } |
| ] |
| } |
| } |
| } |
| """ |