blob: 25bb54a0c606e703846e39d5a94b1f794f7ea37d [file] [log] [blame]
from typing import Tuple, List, Dict
import torch
import torch.nn as nn
from torch import Tensor
class Simple(torch.nn.Module):
def __init__(self, N, M):
super().__init__()
self.weight = torch.nn.Parameter(torch.rand(N, M))
def forward(self, input):
output = self.weight + input
return output
def load_library():
torch.ops.load_library("my_so.so")
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet18():
return ResNet(BasicBlock, [2, 2, 2, 2])
class BatchedModel(nn.Module):
def forward(self, input1: Tensor, input2: Tensor) -> Tuple[Tensor, Tensor]:
return (input1 * -1, input2 * -1)
def make_prediction(
self, input: List[Tuple[Tensor, Tensor]]
) -> List[Tuple[Tensor, Tensor]]:
return [self.forward(i[0], i[1]) for i in input]
def make_batch(
self, mega_batch: List[Tuple[Tensor, Tensor, int]], goals: Dict[str, str]
) -> List[List[Tuple[Tensor, Tensor, int]]]:
max_bs = int(goals["max_bs"])
return [
mega_batch[start_idx : start_idx + max_bs]
for start_idx in range(0, len(mega_batch), max_bs)
]
class MultiReturn(torch.nn.Module):
def __init__(self):
super(MultiReturn, self).__init__()
def forward(self, t):
# type: (Tuple[Tensor, Tensor]) -> Tuple[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor]]
a, b = t
result = ((a.masked_fill_(b, 0.1), b), (torch.ones_like(a), b))
return result
multi_return_metadata = r"""
{
"metadata_container": {
"forward": {
"named_input_metadata": {
"t": {
"argument_type": {
"tuple": {
"tuple_elements": [
{
"tensor": 1
},
{
"tensor": 6
}
]
}
},
"optional_argument": false,
"metadata": {
"dense_features": {
"feature_desc": [
{
"feature_name": "test_feature_1",
"feature_id": 1
}
],
"expected_shape": {
"dims": [
-1,
1
],
"unknown_rank": false
},
"data_type": 1,
"feature_store_feature_type": 0
}
}
}
},
"positional_output_metadata": [
{
"argument_type": {
"tuple": {
"tuple_elements": [
{
"tensor": 1
},
{
"tensor": 6
}
]
}
},
"optional_argument": false,
"metadata": {
"dense_features": {
"feature_desc": [
{
"feature_name": "test_feature_1",
"feature_id": 1
}
],
"expected_shape": {
"dims": [
-1,
1
],
"unknown_rank": false
},
"data_type": 1,
"feature_store_feature_type": 0
}
}
},
{
"argument_type": {
"tuple": {
"tuple_elements": [
{
"tensor": 1
},
{
"tensor": 6
}
]
}
},
"optional_argument": false,
"metadata": {
"dense_features": {
"feature_desc": [
{
"feature_name": "test_feature_3",
"feature_id": 3
}
],
"expected_shape": {
"dims": [
-1,
1
],
"unknown_rank": false
},
"data_type": 1,
"feature_store_feature_type": 0
}
}
}
]
}
}
}
"""