| #include <ATen/Parallel.h> |
| #include <cstring> |
| #include <gtest/gtest.h> |
| |
| #include <c10/util/irange.h> |
| #include <libgen.h> |
| #include <torch/csrc/deploy/deploy.h> |
| #include <torch/script.h> |
| #include <torch/torch.h> |
| |
| #include <future> |
| #include <iostream> |
| #include <string> |
| |
| int main(int argc, char* argv[]) { |
| ::testing::InitGoogleTest(&argc, argv); |
| int rc = RUN_ALL_TESTS(); |
| return rc; |
| } |
| |
| void compare_torchpy_jit(const char* model_filename, const char* jit_filename) { |
| // Test |
| torch::deploy::InterpreterManager m(1); |
| torch::deploy::Package p = m.load_package(model_filename); |
| auto model = p.load_pickle("model", "model.pkl"); |
| at::IValue eg; |
| { |
| auto I = p.acquire_session(); |
| eg = I.self.attr("load_pickle")({"model", "example.pkl"}).toIValue(); |
| } |
| |
| at::Tensor output = model(eg.toTuple()->elements()).toTensor(); |
| |
| // Reference |
| auto ref_model = torch::jit::load(jit_filename); |
| at::Tensor ref_output = |
| ref_model.forward(eg.toTuple()->elements()).toTensor(); |
| |
| ASSERT_TRUE(ref_output.allclose(output, 1e-03, 1e-05)); |
| } |
| |
| const char* simple = "torch/csrc/deploy/example/generated/simple"; |
| const char* simple_jit = "torch/csrc/deploy/example/generated/simple_jit"; |
| |
| const char* path(const char* envname, const char* path) { |
| const char* e = getenv(envname); |
| return e ? e : path; |
| } |
| |
| TEST(TorchpyTest, LoadLibrary) { |
| torch::deploy::InterpreterManager m(1); |
| torch::deploy::Package p = m.load_package( |
| path("LOAD_LIBRARY", "torch/csrc/deploy/example/generated/load_library")); |
| auto model = p.load_pickle("fn", "fn.pkl"); |
| model({}); |
| } |
| |
| TEST(TorchpyTest, InitTwice) { |
| { torch::deploy::InterpreterManager m(2); } |
| { torch::deploy::InterpreterManager m(1); } |
| } |
| |
| TEST(TorchpyTest, DifferentInterps) { |
| torch::deploy::InterpreterManager m(2); |
| m.register_module_source("check_none", "check = id(None)\n"); |
| int64_t id0, id1; |
| { |
| auto I = m.all_instances()[0].acquire_session(); |
| id0 = I.global("check_none", "check").toIValue().toInt(); |
| } |
| { |
| auto I = m.all_instances()[1].acquire_session(); |
| id1 = I.global("check_none", "check").toIValue().toInt(); |
| } |
| ASSERT_NE(id0, id1); |
| } |
| |
| TEST(TorchpyTest, SimpleModel) { |
| compare_torchpy_jit(path("SIMPLE", simple), path("SIMPLE_JIT", simple_jit)); |
| } |
| |
| TEST(TorchpyTest, ResNet) { |
| compare_torchpy_jit( |
| path("RESNET", "torch/csrc/deploy/example/generated/resnet"), |
| path("RESNET_JIT", "torch/csrc/deploy/example/generated/resnet_jit")); |
| } |
| |
| TEST(TorchpyTest, Movable) { |
| torch::deploy::InterpreterManager m(1); |
| torch::deploy::ReplicatedObj obj; |
| { |
| auto I = m.acquire_one(); |
| auto model = |
| I.global("torch.nn", "Module")(std::vector<torch::deploy::Obj>()); |
| obj = I.create_movable(model); |
| } |
| obj.acquire_session(); |
| } |
| |
| TEST(TorchpyTest, MultiSerialSimpleModel) { |
| torch::deploy::InterpreterManager manager(3); |
| torch::deploy::Package p = manager.load_package(path("SIMPLE", simple)); |
| auto model = p.load_pickle("model", "model.pkl"); |
| auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit)); |
| |
| auto input = torch::ones({10, 20}); |
| size_t ninterp = 3; |
| std::vector<at::Tensor> outputs; |
| |
| // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores) |
| for (const auto i : c10::irange(ninterp)) { |
| outputs.push_back(model({input.alias()}).toTensor()); |
| } |
| |
| // Generate reference |
| auto ref_output = ref_model.forward({input.alias()}).toTensor(); |
| |
| // Compare all to reference |
| for (const auto i : c10::irange(ninterp)) { |
| ASSERT_TRUE(ref_output.equal(outputs[i])); |
| } |
| |
| // test kwargs api with args |
| std::vector<c10::IValue> args; |
| args.emplace_back(input); |
| std::unordered_map<std::string, c10::IValue> kwargs_empty; |
| auto jit_output_args = model.call_kwargs(args, kwargs_empty).toTensor(); |
| ASSERT_TRUE(ref_output.equal(jit_output_args)); |
| |
| // and with kwargs only |
| std::unordered_map<std::string, c10::IValue> kwargs; |
| kwargs["input"] = input; |
| auto jit_output_kwargs = model.call_kwargs(kwargs).toTensor(); |
| ASSERT_TRUE(ref_output.equal(jit_output_kwargs)); |
| } |
| |
| TEST(TorchpyTest, ThreadedSimpleModel) { |
| size_t nthreads = 3; |
| torch::deploy::InterpreterManager manager(nthreads); |
| |
| torch::deploy::Package p = manager.load_package(path("SIMPLE", simple)); |
| auto model = p.load_pickle("model", "model.pkl"); |
| auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit)); |
| |
| auto input = torch::ones({10, 20}); |
| |
| std::vector<at::Tensor> outputs; |
| |
| std::vector<std::future<at::Tensor>> futures; |
| // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores) |
| for (const auto i : c10::irange(nthreads)) { |
| futures.push_back(std::async(std::launch::async, [&model]() { |
| auto input = torch::ones({10, 20}); |
| for (const auto i : c10::irange(100)) { |
| model({input.alias()}).toTensor(); |
| } |
| auto result = model({input.alias()}).toTensor(); |
| return result; |
| })); |
| } |
| for (const auto i : c10::irange(nthreads)) { |
| outputs.push_back(futures[i].get()); |
| } |
| |
| // Generate reference |
| auto ref_output = ref_model.forward({input.alias()}).toTensor(); |
| |
| // Compare all to reference |
| for (const auto i : c10::irange(nthreads)) { |
| ASSERT_TRUE(ref_output.equal(outputs[i])); |
| } |
| } |
| |
| TEST(TorchpyTest, ThrowsSafely) { |
| // See explanation in deploy.h |
| torch::deploy::InterpreterManager manager(3); |
| // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto) |
| EXPECT_THROW(manager.load_package("some garbage path"), c10::Error); |
| |
| torch::deploy::Package p = manager.load_package(path("SIMPLE", simple)); |
| // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto) |
| EXPECT_THROW(p.load_pickle("some other", "garbage path"), c10::Error); |
| |
| auto model = p.load_pickle("model", "model.pkl"); |
| // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto) |
| EXPECT_THROW(model(at::IValue("unexpected input")), c10::Error); |
| } |
| |
| TEST(TorchpyTest, AcquireMultipleSessionsInTheSamePackage) { |
| torch::deploy::InterpreterManager m(1); |
| |
| torch::deploy::Package p = m.load_package(path("SIMPLE", simple)); |
| auto I = p.acquire_session(); |
| |
| auto I1 = p.acquire_session(); |
| } |
| |
| TEST(TorchpyTest, AcquireMultipleSessionsInDifferentPackages) { |
| torch::deploy::InterpreterManager m(1); |
| |
| torch::deploy::Package p = m.load_package(path("SIMPLE", simple)); |
| auto I = p.acquire_session(); |
| |
| torch::deploy::Package p1 = m.load_package( |
| path("RESNET", "torch/csrc/deploy/example/generated/resnet")); |
| auto I1 = p1.acquire_session(); |
| } |
| |
| TEST(TorchpyTest, TensorSharingNotAllowed) { |
| size_t nthreads = 2; |
| torch::deploy::InterpreterManager m(nthreads); |
| // generate a tensor from one interpreter |
| auto I0 = m.all_instances()[0].acquire_session(); |
| auto I1 = m.all_instances()[1].acquire_session(); |
| auto obj = I0.global("torch", "empty")({I0.from_ivalue(2)}); |
| auto t = obj.toIValue().toTensor(); |
| // try to feed it to the other interpreter, should error |
| // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto) |
| ASSERT_THROW(I1.global("torch", "sigmoid")({t}), c10::Error); |
| } |
| |
| TEST(TorchpyTest, TaggingRace) { |
| // At time of writing, this takes about 7s to run on DEBUG=1. I think |
| // this is OK, but feel free to fiddle with the knobs here to reduce the |
| // runtime |
| constexpr int64_t trials = 4; |
| constexpr int64_t nthreads = 16; |
| torch::deploy::InterpreterManager m(nthreads); |
| // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores) |
| for (const auto n : c10::irange(trials)) { |
| at::Tensor t = torch::empty(2); |
| std::atomic<int64_t> success(0); |
| std::atomic<int64_t> failed(0); |
| at::parallel_for(0, nthreads, 1, [&](int64_t begin, int64_t end) { |
| for (const auto i : c10::irange(begin, end)) { |
| auto I = m.all_instances()[i].acquire_session(); |
| try { |
| I.from_ivalue(t); |
| success++; |
| } catch (const c10::Error& e) { |
| failed++; |
| } |
| } |
| }); |
| ASSERT_EQ(success, 1); |
| ASSERT_EQ(failed, nthreads - 1); |
| } |
| } |
| |
| TEST(TorchpyTest, DisarmHook) { |
| at::Tensor t = torch::empty(2); |
| { |
| torch::deploy::InterpreterManager m(1); |
| auto I = m.acquire_one(); |
| I.from_ivalue(t); |
| } // unload the old interpreter |
| torch::deploy::InterpreterManager m(1); |
| auto I = m.acquire_one(); |
| // NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto) |
| ASSERT_THROW(I.from_ivalue(t), c10::Error); // NOT a segfault |
| } |
| |
| TEST(TorchpyTest, RegisterModule) { |
| torch::deploy::InterpreterManager m(2); |
| m.register_module_source("foomodule", "def add1(x): return x + 1\n"); |
| for (const auto& interp : m.all_instances()) { |
| auto I = interp.acquire_session(); |
| AT_ASSERT(3 == I.global("foomodule", "add1")({2}).toIValue().toInt()); |
| } |
| } |
| |
| TEST(TorchpyTest, FxModule) { |
| size_t nthreads = 3; |
| torch::deploy::InterpreterManager manager(nthreads); |
| torch::deploy::Package p = manager.load_package(path( |
| "SIMPLE_LEAF_FX", "torch/csrc/deploy/example/generated/simple_leaf_fx")); |
| auto model = p.load_pickle("model", "model.pkl"); |
| |
| std::vector<at::Tensor> outputs; |
| auto input = torch::ones({5, 10}); |
| for (const auto i : c10::irange(nthreads)) { |
| outputs.push_back(model({input.alias()}).toTensor()); |
| } |
| |
| // reference model |
| auto ref_model = torch::jit::load(path( |
| "SIMPLE_LEAF_JIT", |
| "torch/csrc/deploy/example/generated/simple_leaf_jit")); |
| |
| auto ref_output = ref_model.forward({input.alias()}).toTensor(); |
| |
| // Compare all to reference |
| for (const auto i : c10::irange(nthreads)) { |
| ASSERT_TRUE(ref_output.equal(outputs[i])); |
| } |
| } |
| |
| #ifdef TEST_CUSTOM_LIBRARY |
| thread_local int in_another_module = 5; |
| TEST(TorchpyTest, SharedLibraryLoad) { |
| torch::deploy::InterpreterManager manager(2); |
| auto no_args = at::ArrayRef<torch::deploy::Obj>(); |
| for (auto& interp : manager.all_instances()) { |
| auto I = interp.acquire_session(); |
| |
| const char* test_lib_path = getenv("LIBTEST_DEPLOY_LIB"); |
| if (!test_lib_path) { |
| I.global("sys", "path").attr("append")({"torch/csrc/deploy"}); |
| I.global("test_deploy_python", "setup")({getenv("PATH")}); |
| } else { |
| char buf[PATH_MAX]; |
| strncpy(buf, test_lib_path, PATH_MAX); |
| dirname(buf); |
| I.global("sys", "path").attr("append")({buf}); |
| } |
| |
| AT_ASSERT(I.global("libtest_deploy_lib", "check_initial_state")(no_args) |
| .toIValue() |
| .toBool()); |
| ASSERT_TRUE( |
| I.global("libtest_deploy_lib", "simple_add")({5, 4}) |
| .toIValue() |
| .toInt() == 9); |
| // I.global("numpy", "array"); // force numpy to load here so it is loaded |
| // // twice before we run the tests |
| } |
| for (auto& interp : manager.all_instances()) { |
| auto I = interp.acquire_session(); |
| // auto i = |
| // I.global("test_deploy_python", "numpy_test")({1}).toIValue().toInt(); |
| I.global("libtest_deploy_lib", "raise_and_catch_exception")({true}); |
| try { |
| I.global("libtest_deploy_lib", "raise_exception")(no_args); |
| ASSERT_TRUE(false); // raise_exception did not throw? |
| } catch (std::exception& err) { |
| ASSERT_TRUE(std::string(err.what()).find("yet") != std::string::npos); |
| } |
| in_another_module = 6; |
| ASSERT_TRUE( |
| I.global("libtest_deploy_lib", "get_in_another_module")(no_args) |
| .toIValue() |
| .toInt() == 6); |
| ASSERT_TRUE( |
| I.global("libtest_deploy_lib", "get_bar")(no_args).toIValue().toInt() == |
| 14); |
| { |
| std::thread foo([&] { |
| I.global("libtest_deploy_lib", "set_bar")({13}); |
| ASSERT_TRUE( |
| I.global("libtest_deploy_lib", "get_bar")(no_args) |
| .toIValue() |
| .toInt() == 13); |
| }); |
| foo.join(); |
| } |
| ASSERT_TRUE( |
| I.global("libtest_deploy_lib", "get_bar_destructed")(no_args) |
| .toIValue() |
| .toInt() == 1); |
| I.global("libtest_deploy_lib", "set_bar")({12}); |
| } |
| } |
| #endif |