blob: 300654fe8fd25e4afe4d59929f1b5355a85c3907 [file] [log] [blame]
import torch
def sgd(opfunc, x, config, state=None):
"""A plain implementation of SGD
ARGS:
- `opfunc` : a function that takes a single input (X), the point
of a evaluation, and returns f(X) and df/dX
- `x` : the initial point
- `config` : a table with configuration parameters for the optimizer
- `config['learningRate']` : learning rate
- `config['learningRateDecay']` : learning rate decay
- `config['weightDecay']` : weight decay
- `config['weightDecays']` : vector of individual weight decays
- `config['momentum']` : momentum
- `config['dampening']` : dampening for momentum
- `config['nesterov']` : enables Nesterov momentum
- `config['learningRates']` : vector of individual learning rates
- `state` : a table describing the state of the optimizer; after each
call the state is modified
- `state['evalCounter']` : evaluation counter (optional: 0, by default)
RETURN:
- `x` : the new x vector
- `f(x)` : the function, evaluated before the update
(Clement Farabet, 2012)
"""
# (0) get/update state
state = state if state is not None else config
lr = config.get('learningRate', 1e-3)
lrd = config.get('learningRateDecay', 0)
wd = config.get('weightDecay', 0)
mom = config.get('momentum', 0)
damp = config.get('dampening', mom)
nesterov = config.get('nesterov', False)
lrs = config.get('learningRates', None)
wds = config.get('weightDecays', None)
if 'evalCounter' not in state:
state['evalCounter'] = 0
if nesterov and (mom <= 0 and damp != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
if wd != 0 and wds is not None:
raise ValueError("Only one of wd and wds can be specified")
# (1) evaluate f(x) and df/dx
fx, dfdx = opfunc(x)
# (2) weight decay with single or individual parameters
if wd != 0:
dfdx.add_(wd, x)
elif wds is not None:
if not state['decayParameters']:
state['decayParameters'] = torch.Tensor().type_as(x).resize_as_(dfdx)
state['decayParameters'].copy_(wds).mul_(x)
dfdx.add_(state['decayParameters'])
# (3) apply momentum
if mom != 0:
if 'dfdx' not in state:
state['dfdx'] = torch.Tensor().type_as(dfdx).resize_as_(dfdx).copy_(dfdx)
else:
state['dfdx'].mul_(mom).add_(1 - damp, dfdx)
if nesterov:
dfdx.add_(mom, state['dfdx'])
else:
dfdx = state['dfdx']
# (4) learning rate decay (annealing)
clr = lr / (1 + state['evalCounter'] * lrd)
# (5) parameter update with single or individual learning rates
if lrs is not None:
if 'deltaParameters' not in state:
state['deltaParameters'] = torch.Tensor().type_as(x).resize_as_(dfdx)
state['deltaParameters'].copy_(lrs).mul_(dfdx)
x.add_(-clr, state['deltaParameters'])
else:
x.add_(-clr, dfdx)
# (6) update evaluation counter
state['evalCounter'] += 1
# return x*, f(x) before optimization
return x, fx