| def nag(opfunc, x, config, state=None): | |
| """ | |
| An implementation of SGD adapted with features of Nesterov's | |
| Accelerated Gradient method, based on the paper | |
| On the Importance of Initialization and Momentum in Deep Learning | |
| Sutsveker et. al., ICML 2013 | |
| ARGS: | |
| opfunc : a function that takes a single input (X), the point of | |
| evaluation, and returns f(X) and df/dX | |
| x : the initial point | |
| state : a table describing the state of the optimizer; after each | |
| call the state is modified | |
| state['learningRate'] : learning rate | |
| state['learningRateDecay'] : learning rate decay | |
| state['weightDecay'] : weight decay | |
| state['momentum'] : momentum | |
| state['learningRates'] : vector of individual learning rates | |
| RETURN: | |
| x : the new x vector | |
| f(x) : the function, evaluated before the update | |
| (Dilip Krishnan, 2013) | |
| """ | |
| # (0) get/update state | |
| if config is None and state is None: | |
| raise ValueError("nag requires a dictionary to retain state between iterations") | |
| state = state if state is not None else config | |
| lr = config.get('learningRate', 1e-3) | |
| lrd = config.get('learningRateDecay', 0) | |
| wd = config.get('weightDecay', 0) | |
| mom = config.get('momentum', 0.9) | |
| damp = config.get('dampening', mom) | |
| lrs = config.get('learningRates', None) | |
| state['evalCounter'] = state.get('evalCounter', 0) | |
| if mom <= 0: | |
| raise ValueError('Momentum must be positive for Nesterov Accelerated Gradient') | |
| # (1) evaluate f(x) and df/dx | |
| # first step in the direction of the momentum vector | |
| if 'dfdx' in state: | |
| x.add_(mom, state['dfdx']) | |
| #: compute gradient at that point | |
| # comment out the above line to get the original SGD | |
| fx, dfdx = opfunc(x) | |
| # (2) weight decay | |
| if wd != 0: | |
| dfdx.add_(wd, x) | |
| # (3) learning rate decay (annealing) | |
| clr = lr / (1 + state['evalCounter'] * lrd) | |
| # (4) apply momentum | |
| if 'dfdx' not in state: | |
| state['dfdx'] = dfdx.new().resize_as_(dfdx).zero_() | |
| else: | |
| state['dfdx'].mul_(mom) | |
| # (5) parameter update with single or individual learning rates | |
| if lrs is not None: | |
| if 'deltaParameters' in state: | |
| state['deltaParameters'] = x.new().resize_as_(dfdx) | |
| state['deltaParameters'].copy_(lrs).mul_(dfdx) | |
| x.add_(-clr, state['deltaParameters']) | |
| state['dfdx'].add_(-clr, state['deltaParameters']) | |
| else: | |
| x.add_(-clr, dfdx) | |
| state['dfdx'].add_(-clr, dfdx) | |
| # (6) update evaluation counter | |
| state['evalCounter'] += 1 | |
| # return x, f(x) before optimization | |
| return x, fx |