blob: d39290fdfb0343da2bc4e19e7e74d18b5c85e3f7 [file] [log] [blame]
#include <Python.h>
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/pybind.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/utils/pybind.h"
#include <iostream>
#include <sstream>
namespace torch { namespace jit {
void initPythonIRBindings(PyObject * module_) {
auto m = py::handle(module_).cast<py::module>();
#define GS(name) \
def(#name,&Graph :: name)
py::class_<Graph,std::shared_ptr<Graph>>(m,"Graph")
.def(py::init<>())
.def("__repr__",[](Graph & g) {
std::stringstream ss;
ss << g;
return ss.str();
})
.def("wrapPyFuncWithSymbolic", [](Graph &g, py::function func, std::vector<Value*> inputs, size_t n_outputs, py::function symbolic) {
// This function should be used for situations where we have a Python function
// that should have different behavior when exporting for JIT interpreter
// execution v.s. for ONNX export. For example, nn.utils.rnn.pack_padded_sequence
// emits a placeholder under ONNX export, but we want to keep the ability to
// run this in the interpreter, thus we emit a PythonOp for that use case.
// Concretely, this function emits a PythonOp wrapping the passed-in
// parameter `func`, while storing the function `symbolic` for use by the
// ONNX export
std::string cconv(inputs.size(), 't');
func.attr("symbolic") = symbolic;
Node* new_node = g.insertNode(g.createPythonOp(
THPObjectPtr(func.release().ptr()), cconv, false, {}, {}, false));
for (auto i : inputs)
new_node->addInput(i);
std::vector<Value*> outputs;
for (size_t i = 0; i < n_outputs; ++i)
new_node->addOutput();
auto sl = std::make_shared<StringSourceLocation>(tracer::getPythonInterpreterStackTrace());
new_node->setSourceLocation(sl);
return py::make_iterator(new_node->outputs().begin(), new_node->outputs().end());
}, py::return_value_policy::reference_internal)
.def("inputs",[](Graph &g) {
return py::make_iterator(g.inputs().begin(), g.inputs().end());
})
.def("outputs",[](Graph &g) {
return py::make_iterator(g.outputs().begin(), g.outputs().end());
})
// TODO: Iterator invalidation might make this hazardous
.def("nodes",[](Graph &g) {
return py::make_iterator(g.nodes().begin(), g.nodes().end());
})
.def("addInput",[](Graph &g) { return g.addInput(); })
.GS(advanceStage)
.GS(stage)
.GS(eraseInput)
.GS(registerOutput)
.def("create",[](Graph & g, const char * str) {
return g.create(Symbol::fromQualString(str));
})
.def("create",[](Graph & g, const char * str, size_t noutputs) {
return g.create(Symbol::fromQualString(str), noutputs);
})
.def("create",[](Graph & g, const char * str, const std::vector<Value*> & inputs) {
return g.create(Symbol::fromQualString(str),inputs);
})
.def("create",[](Graph & g, const char * str, const std::vector<Value*> & inputs, size_t noutputs) {
return g.create(Symbol::fromQualString(str),inputs, noutputs);
})
.GS(createConstant)
.GS(createFusionGroup)
.def("createClone",[](Graph & g, Node * n, py::object fn) {
return g.createClone(n, [&](Value * e) {
return fn(e).cast<Value*>();
});
})
.GS(appendNode)
.GS(prependNode)
.GS(lint)
;
#undef GS
#define VS(name) \
def(#name,&Value :: name)
py::class_<Value,std::unique_ptr<Value, py::nodelete>>(m,"Value")
.def("__repr__",[](Value & n) {
std::stringstream ss;
ss << n.uniqueName() << " defined in (" << *n.node() << ")";
return ss.str();
})
.VS(type)
.VS(setType)
.VS(inferTypeFrom)
// skip owningGraph because it returns a raw pointer to a otherwise
// std::shared_ptr stored graph object, and would cause a double free
.VS(unique)
.VS(uniqueName)
.VS(setUniqueName)
.VS(setStage)
.VS(stage)
.VS(offset)
.VS(uses)
.VS(isHandle)
.VS(replaceAllUsesWith)
.def("node",[](Value &v) { return v.node(); })
.def("setTypeAs", [](Value * node, Value * other) {
node->setType(other->type());
return node;
})
.VS(copyMetadata)
;
#undef VS
#define NS(name) \
def(#name,&Node :: name)
py::class_<Node,std::unique_ptr<Node, py::nodelete>>(m,"Node")
.def("__repr__",[](Node & n) {
std::stringstream ss;
ss << n;
return ss.str();
})
.def("hasMultipleOutputs",[](Node&n) {
return n.outputs().size() > 1;
})
.def("outputsSize",[](Node &n) {
return n.outputs().size();
})
.NS(kind)
.NS(stage)
.NS(setStage)
.def("inputs",[](Node &n) {
return py::make_iterator(n.inputs().begin(), n.inputs().end());
})
.def("outputs",[](Node &n) {
return py::make_iterator(n.outputs().begin(), n.outputs().end());
})
.NS(output)
.NS(addInput)
.NS(replaceInput)
.NS(replaceInputWith)
.NS(replaceAllUsesWith)
.NS(insertBefore)
.NS(insertAfter)
.NS(moveAfter)
.NS(moveBefore)
.NS(removeInput)
.NS(removeAllInputs)
.NS(destroy)
.NS(hasUses)
.NS(eraseOutput)
.NS(addOutput)
.NS(scopeName)
#define AS(name) def(#name,&Attributes<Node> :: name)
// methods from Attributes
.AS(copyAttributes)
.AS(hasAttributes)
#undef AS
#define AS(name) def(#name,&Attributes<Node> :: name ## S)
// The default method names take Symbol, but the string conversion for
// Symbol you to qualify with attr::. This is not very user friendly
// for attributes, so expose the string variants instead.
.AS(hasAttribute)
.AS(kindOf)
.AS(removeAttribute)
.AS(attributeNames)
#undef AS
#define CREATE_ACCESSOR(Kind,method) \
def(#method "_",[](Node & n, const char * name, Kind##Attr::ValueType v) { \
return n . method ## _(Symbol::attr(name), std::move(v)); \
}) \
.def(#method, [](Node & n, const char * name) { \
return n.method(Symbol::attr(name)); \
})
.CREATE_ACCESSOR(Float,f)
.CREATE_ACCESSOR(Floats,fs)
.CREATE_ACCESSOR(String,s)
.CREATE_ACCESSOR(Strings,ss)
.CREATE_ACCESSOR(Int,i)
.CREATE_ACCESSOR(Ints,is)
.CREATE_ACCESSOR(Graph,g)
.CREATE_ACCESSOR(Graphs,gs)
#undef CREATE_ACCESSOR
// Tensor (t_) -- manually written to unwrap the variable into a tensor.
.def("t_",[](Node & n, const char * name, torch::autograd::Variable v) {
return n.t_(Symbol::attr(name), std::move(v.data()));
})
.def("t", [](Node & n, const char * name) {
return torch::autograd::make_variable(n.t(Symbol::attr(name)), /*requires_grad=*/false);
})
// Tensors (ts_) -- manually written to unwrap variables into tensors.
.def("ts_",[](Node & n, const char * name, std::vector<torch::autograd::Variable> vs) {
std::vector<at::Tensor> tensors;
tensors.reserve(vs.size());
for (auto& variable : vs) {
tensors.push_back(std::move(variable.data()));
}
return n.ts_(Symbol::attr(name), std::move(tensors));
})
.def("ts", [](Node & n, const char * name) {
auto tensors = n.ts(Symbol::attr(name));
std::vector<torch::autograd::Variable> variables;
variables.reserve(tensors.size());
for (auto& tensor : tensors) {
variables.push_back(torch::autograd::make_variable(
std::move(tensor), /*requires_grad=*/false));
}
return variables;
})
.def("z_",[](Node & n, const char * name, at::Tensor v) {
return n.t_(Symbol::attr(name), v.view({}));
})
.def("z",[](Node & n, const char * name) {
return n.t(Symbol::attr(name));
})
.def("zs_",[](Node & n, const char * name, TensorsAttr::ValueType v) {
for (size_t i = 0; i < v.size(); ++ i) {
v[i] = v[i].view({});
}
return n.ts_(Symbol::attr(name), std::move(v));
})
.def("zs",[](Node & n, const char * name) {
return n.ts(Symbol::attr(name));
})
.def("pyobj",[](Node & n) {
return py::handle(n.expect<PythonOp>()->pyobj.get()).cast<py::object>();
})
.def("cconv",[](Node & n) {
return n.expect<PythonOp>()->cconv;
})
.def("pyname",[](Node & n) {
return n.expect<PythonOp>()->name();
})
.def("scalar_args",[](Node & n) {
auto op = n.expect<PythonOp>();
auto scalars = py::list();
auto append = scalars.attr("append");
for(auto & arg : op->scalar_args) {
append(py::handle(arg.get()));
}
return scalars;
})
;
#define TS(name) \
def(#name,&Node :: name)
py::class_<Type,std::shared_ptr<Type>>(m,"Type")
.def("__repr__",[](Type & t) {
std::stringstream ss;
ss << t;
return ss.str();
})
.def("kind",[](Type& t_) {
Type * t = &t_;
switch(t->kind()) {
case TypeKind::HandleType:
return "HandleType";
case TypeKind::DynamicType:
return "DynamicType";
case TypeKind::TensorType:
return "TensorType";
default:
torch::barf("unknown type kind");
return "";
}
})
.def("sizes",[](Type& t) {
return t.expect<TensorType>()->sizes();
})
.def("strides",[](Type& t) {
return t.expect<TensorType>()->strides();
})
.def("contiguous",[](Type& t) {
return t.expect<TensorType>()->contiguous();
})
.def("scalarType",[](Type& t) {
return at::toString(t.expect<TensorType>()->scalarType());
})
;
py::class_<Use>(m,"Use")
.def_readonly("user",&Use::user)
.def_readonly("offset",&Use::offset);
m.def("_jit_get_graph", [](tracer::TracingState* s) {
return s->graph;
});
m.def("_jit_is_tracing", [](const autograd::Variable& var) {
return tracer::isTracing(var);
});
}
}}