|  | # Owner(s): ["module: mkldnn"] | 
|  | import torch | 
|  | import unittest | 
|  | import itertools | 
|  |  | 
|  | import torch.nn as nn | 
|  | import torch.nn.functional as F | 
|  | from torch.testing._internal.jit_utils import JitTestCase | 
|  | from torch.testing._internal.common_utils import run_tests, TEST_SCIPY, IS_WINDOWS, IS_MACOS | 
|  |  | 
|  | LLGA_FUSION_GROUP = 'prim::oneDNNFusionGroup' | 
|  | LLGA_NOT_ENABLED = not torch._C.has_mkldnn or IS_WINDOWS or IS_MACOS | 
|  |  | 
|  |  | 
|  | def warmup_forward(f, *args, profiling_count=2): | 
|  | for i in range(profiling_count): | 
|  | results = f(*args) | 
|  |  | 
|  | return results | 
|  |  | 
|  |  | 
|  | class JitLlgaTestCase(JitTestCase): | 
|  | def setUp(self): | 
|  | torch.jit.enable_onednn_fusion(True) | 
|  |  | 
|  | def tearDown(self): | 
|  | torch.jit.enable_onednn_fusion(False) | 
|  |  | 
|  | def checkTrace(self, m, x, *args, **kwargs): | 
|  | if isinstance(m, torch.nn.Module): | 
|  | m.eval() | 
|  | with torch.no_grad(), \ | 
|  | torch._jit_internal._disable_emit_hooks(): | 
|  | traced = torch.jit.trace(m, x) | 
|  | if isinstance(m, torch.nn.Module): | 
|  | traced = torch.jit.freeze(traced) | 
|  | warmup_forward(traced, *x) | 
|  | fwd_graph = traced.graph_for(*x) | 
|  |  | 
|  | ref_o = m(*x) | 
|  | jit_o = traced(*x) | 
|  | self.assertEqual(jit_o, ref_o) | 
|  | return traced, fwd_graph | 
|  |  | 
|  | def assertFused(self, graph, fused_patterns): | 
|  | for pat in fused_patterns: | 
|  | self.assertGraphContainsExactly(graph, pat, 0) | 
|  |  | 
|  |  | 
|  | try: | 
|  | import torchvision | 
|  | HAS_TORCHVISION = True | 
|  | except ImportError: | 
|  | HAS_TORCHVISION = False | 
|  | except RuntimeError: | 
|  | HAS_TORCHVISION = False | 
|  | skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, 'no torchvision') | 
|  |  | 
|  | def get_eltwise_fn(name): | 
|  | if hasattr(torch, name): | 
|  | return getattr(torch, name) | 
|  | elif hasattr(F, name): | 
|  | return getattr(F, name) | 
|  | else: | 
|  | raise NameError('Eltwise function %s not found' % name) | 
|  |  | 
|  |  | 
|  | @unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled") | 
|  | class TestOp(JitLlgaTestCase): | 
|  | def test_conv2d(self): | 
|  | for [spatial, in_channels, out_channels, kernel, padding, stride, dilation, g, bias] in itertools.product( | 
|  | [7, 8], | 
|  | [8, 15], | 
|  | [7, 16], | 
|  | [3, 4], | 
|  | [0, 2], | 
|  | [1, 2], | 
|  | [1, 2], | 
|  | [1, 2], | 
|  | [True, False]): | 
|  |  | 
|  | m = nn.Conv2d(in_channels=in_channels * g, | 
|  | out_channels=out_channels * g, | 
|  | kernel_size=kernel, | 
|  | padding=padding, | 
|  | stride=stride, | 
|  | dilation=dilation, | 
|  | groups=g, | 
|  | bias=bias) | 
|  |  | 
|  | x = torch.rand(1, in_channels * g, spatial, spatial) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  |  | 
|  | def test_bn2d(self): | 
|  | m = nn.BatchNorm2d(32).eval() | 
|  | x = torch.rand(1, 32, 28, 28) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | # single-op partition shouldn't be created for softmax | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0) | 
|  |  | 
|  | def test_eltwise(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self, eltwise_fn): | 
|  | super(M, self).__init__() | 
|  | self.eltwise = eltwise_fn | 
|  |  | 
|  | def forward(self, x): | 
|  | return self.eltwise(x) | 
|  |  | 
|  | for eltwise in ['relu', 'gelu']: | 
|  | eltwise_fn = get_eltwise_fn(eltwise) | 
|  | m = M(eltwise_fn) | 
|  | x = torch.rand(1, 32, 28, 28) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | # single-op partition shouldn't be created. | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0) | 
|  |  | 
|  | def test_max_pool2d(self): | 
|  | for [spatial, kernel, padding, stride, dilation, ceil_mode] in itertools.product( | 
|  | [15, 16, 17, 18, 19], | 
|  | [4, 5], | 
|  | [0, 1, 2], | 
|  | [1, 2],  # [1, 2, 4], TODO: fix issue in pad calculation | 
|  | [1],     # [1, 2], TODO: backend support for dilation | 
|  | [True, False]): | 
|  |  | 
|  | m = nn.MaxPool2d(kernel_size=kernel, | 
|  | stride=stride, | 
|  | padding=padding, | 
|  | dilation=dilation, | 
|  | ceil_mode=ceil_mode) | 
|  |  | 
|  | x = torch.rand(1, 4, spatial, spatial) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  |  | 
|  | def test_avg_pool2d(self): | 
|  | for [spatial, kernel, padding, stride, ceil_mode, count_include_pad] in itertools.product( | 
|  | [15, 16, 17, 18, 19], | 
|  | [4, 5], | 
|  | [0, 1, 2], | 
|  | [1, 2, 4], | 
|  | [False],  # TODO: oneDNN Graph does not fully support ceil_mode=True | 
|  | [True, False]): | 
|  |  | 
|  | m = nn.AvgPool2d(kernel_size=kernel, | 
|  | stride=stride, | 
|  | padding=padding, | 
|  | ceil_mode=ceil_mode, | 
|  | count_include_pad=count_include_pad) | 
|  |  | 
|  | x = torch.rand(1, 4, spatial, spatial) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  |  | 
|  | def test_variable_kernel_avg_pool2d(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self): | 
|  | super(M, self).__init__() | 
|  |  | 
|  | def forward(self, x): | 
|  | x = F.avg_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=0, count_include_pad=False) | 
|  | return x | 
|  |  | 
|  | x = torch.randn(1, 1000, 1, 1) | 
|  | m = M() | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | # kernel_size is not Constant, shouldn't have any LLGA_FUSION_GROUP | 
|  | # TODO: with shape specialization, should have 1 LLGA_FUSION_GROUP | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0) | 
|  |  | 
|  | def test_softmax(self): | 
|  | for dim in [-4, -3, -2, -1, 0, 1, 2, 3]: | 
|  | m = nn.Softmax(dim=dim) | 
|  | x = torch.rand(8, 12, 12, 12) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | # single-op partition shouldn't be created for softmax | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0) | 
|  |  | 
|  | def test_linear(self): | 
|  | for bias in [True, False]: | 
|  | x = torch.rand(32, 28) | 
|  | m = torch.nn.Linear(in_features=28, out_features=64, bias=bias) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  | self.assertFused(graph, ['aten::linear']) | 
|  |  | 
|  | def _gen_binary_inputs(self, gen_permute=True): | 
|  | for xshape, yshape in [ | 
|  | [[1, 32, 28, 28], [1, 32, 28, 28]], | 
|  | [[1, 32, 28, 28], [1, 1, 28, 28]], | 
|  | [[1, 32, 28, 28], [28]], | 
|  | [[1, 32, 28, 28], [1]], | 
|  |  | 
|  | ]: | 
|  | yield torch.rand(xshape), torch.rand(yshape) | 
|  | if gen_permute and xshape != yshape: | 
|  | yield torch.rand(yshape), torch.rand(xshape) | 
|  |  | 
|  | def test_add(self): | 
|  | def forward_add(x, y): | 
|  | return torch.add(x, y, alpha=2) | 
|  |  | 
|  | for x, y in self._gen_binary_inputs(): | 
|  | _, graph = self.checkTrace(forward_add, [x, y]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  |  | 
|  | def test_add_scalar(self): | 
|  | def add_scalar(x): | 
|  | return 42 + x + 3.14 | 
|  |  | 
|  | x = torch.rand(32, 32) | 
|  | _, graph = self.checkTrace(add_scalar, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  |  | 
|  | def test_addmm(self): | 
|  | def addmm(x, y, z): | 
|  | # alpha and beta are 1, by default | 
|  | return torch.addmm(z, x, y) | 
|  |  | 
|  | x = torch.rand(64, 32) | 
|  | y = torch.rand(32, 32) | 
|  | z = torch.rand(64, 32) | 
|  | _, graph = self.checkTrace(addmm, [x, y, z]) | 
|  | # single-op partition should be created for matmul with bias. | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  |  | 
|  | def test_mul(self): | 
|  | def forward_mul(x, y): | 
|  | return torch.mul(x, y) * 3 | 
|  |  | 
|  | for x, y in self._gen_binary_inputs(): | 
|  | _, graph = self.checkTrace(forward_mul, [x, y]) | 
|  | # single-op partitions shouldn't be created | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  |  | 
|  | def test_identity_binary(self): | 
|  | def forward(x): | 
|  | return x * 1 + 0.0 | 
|  |  | 
|  | x = torch.rand(32) | 
|  | _, graph = self.checkTrace(forward, [x]) | 
|  | self.assertFused(graph, ['aten::add', 'aten::mul']) | 
|  |  | 
|  | def test_layer_norm(self): | 
|  | # TODO: support more normalized_shape | 
|  | m = torch.nn.LayerNorm(10) | 
|  | x = torch.randn(2, 5, 10, 10) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  |  | 
|  | def test_cat(self): | 
|  | def cat_along_dim(d): | 
|  | def forward_cat(*inputs): | 
|  | return torch.cat(inputs, d) | 
|  | return forward_cat | 
|  |  | 
|  | for xshape in [ | 
|  | [8, 8, 8, 8], | 
|  | [64, 8, 32], | 
|  | [2048, 64], | 
|  | ]: | 
|  | for d in range(len(xshape)): | 
|  | x = torch.rand(xshape) | 
|  | _, graph = self.checkTrace(cat_along_dim(d), [x, x, x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  |  | 
|  | def test_typecheck(self): | 
|  | x = torch.rand(32, 28) | 
|  | m = torch.nn.Linear(in_features=28, out_features=64, bias=True) | 
|  | traced, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  | self.assertFused(graph, ['aten::linear']) | 
|  | # change the shape of the input, we should enter fallback graph | 
|  | x = torch.rand(5, 28) | 
|  | self.assertEqual(m(x), traced(x)) | 
|  |  | 
|  |  | 
|  | @unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled") | 
|  | class TestFusionPattern(JitLlgaTestCase): | 
|  | def test_conv2d_eltwise(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self, eltwise_fn): | 
|  | super(M, self).__init__() | 
|  | self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) | 
|  | self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=False) | 
|  | self.eltwise = eltwise_fn | 
|  |  | 
|  | def forward(self, x): | 
|  | x = self.conv1(x) | 
|  | x = self.eltwise(x) | 
|  | x = self.conv2(x) | 
|  | x = self.eltwise(x) | 
|  | return x | 
|  |  | 
|  | # for eltwise in ['relu', 'sigmoid', 'sqrt', 'abs', 'square', 'hardtanh']: | 
|  | for eltwise in ['relu']: | 
|  | for inplace in [True, False]: | 
|  | eltwise_fn_name = eltwise + '_' if inplace else eltwise | 
|  | eltwise_fn = get_eltwise_fn(eltwise_fn_name) | 
|  |  | 
|  | m = M(eltwise_fn) | 
|  | x = torch.rand(1, 32, 28, 28) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 2) | 
|  | # test if relu_ is replace with relu by mutation removal pass | 
|  | self.assertFused(graph, ['aten::' + eltwise_fn_name]) | 
|  | # test if relu is fused into the fusion group | 
|  | self.assertFused(graph, ['aten::' + eltwise]) | 
|  |  | 
|  | def test_conv2d_bn(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self): | 
|  | super(M, self).__init__() | 
|  | self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) | 
|  | self.bn1 = nn.BatchNorm2d(32) | 
|  |  | 
|  | def forward(self, x): | 
|  | x = self.conv1(x) | 
|  | x = self.bn1(x) | 
|  | return x | 
|  |  | 
|  | m = M().eval() | 
|  | x = torch.rand(1, 32, 28, 28) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  | self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm']) | 
|  |  | 
|  |  | 
|  | def test_conv2d_bn_relu(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self): | 
|  | super(M, self).__init__() | 
|  | self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) | 
|  | self.bn1 = nn.BatchNorm2d(32) | 
|  |  | 
|  | def forward(self, x): | 
|  | x = self.conv1(x) | 
|  | x = self.bn1(x) | 
|  | x = F.relu(x) | 
|  | return x | 
|  |  | 
|  | m = M().eval() | 
|  | x = torch.rand(1, 32, 28, 28) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  | self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm', | 
|  | 'aten::relu']) | 
|  |  | 
|  | def test_bn2d_eltwise(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self, eltwise_fn): | 
|  | super(M, self).__init__() | 
|  | self.eltwise = eltwise_fn | 
|  | self.bn = nn.BatchNorm2d(32) | 
|  |  | 
|  | def forward(self, x): | 
|  | x = self.bn(x) | 
|  | x = self.eltwise(x) | 
|  | return x | 
|  |  | 
|  | for eltwise in ['relu']: | 
|  | eltwise_fn = get_eltwise_fn(eltwise) | 
|  | m = M(eltwise_fn).eval() | 
|  | x = torch.rand(1, 32, 28, 28) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  | self.assertFused(graph, ['aten::' + eltwise]) | 
|  |  | 
|  | def test_linear_eltwise(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self, eltwise_fn, bias): | 
|  | super(M, self).__init__() | 
|  | self.linear = nn.Linear(28, 64, bias) | 
|  | self.eltwise = eltwise_fn | 
|  |  | 
|  | def forward(self, x): | 
|  | x = self.linear(x) | 
|  | x = self.eltwise(x) | 
|  | return x | 
|  |  | 
|  | for [has_bias, eltwise] in itertools.product( | 
|  | [True, False], | 
|  | ['relu', 'gelu', 'sigmoid', 'hardtanh', 'relu6', 'elu']): | 
|  |  | 
|  | eltwise_fn = get_eltwise_fn(eltwise) | 
|  | m = M(eltwise_fn, has_bias) | 
|  | x = torch.rand(32, 28, requires_grad=False) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  | self.assertFused(graph, ['aten::' + eltwise]) | 
|  |  | 
|  | def test_conv2d_sum(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self, bias=False): | 
|  | super(M, self).__init__() | 
|  | self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=bias) | 
|  | self.bn1 = nn.BatchNorm2d(32) | 
|  | self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=bias) | 
|  | self.bn2 = nn.BatchNorm2d(32) | 
|  | self.relu = nn.ReLU() | 
|  | self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=bias) | 
|  | self.bn3 = nn.BatchNorm2d(32) | 
|  |  | 
|  | def forward(self, x, y): | 
|  | x = self.conv1(x) | 
|  | x = self.bn1(x) | 
|  | y = self.conv2(y) | 
|  | y = self.bn2(y) | 
|  | z = self.relu(x + y) | 
|  | z = self.conv3(z) | 
|  | z = self.bn3(z) | 
|  | return z | 
|  |  | 
|  | for bias in [True, False]: | 
|  | m = M(bias).eval() | 
|  | x = torch.rand(1, 32, 16, 16, requires_grad=False) | 
|  | y = torch.rand(1, 32, 16, 16, requires_grad=False) | 
|  | _, graph = self.checkTrace(m, [x, y]) | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 3) | 
|  |  | 
|  | def test_wildcard(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self): | 
|  | super(M, self).__init__() | 
|  | self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) | 
|  | self.eltwise = nn.ReLU() | 
|  |  | 
|  | def forward(self, x): | 
|  | x = self.conv1(x) | 
|  | y = self.eltwise(x) | 
|  | return [x, y] | 
|  |  | 
|  | # The pattern is as the following: | 
|  | #      conv | 
|  | #     |    \ | 
|  | # eltwise   \ | 
|  | #    |       \ | 
|  | #  ListConstruct | 
|  | # | 
|  | # The output of conv is used by a wildcard op: ListConstruct. | 
|  | # Thus conv-eltwise cannot be selected into the same Partition. | 
|  | m = M() | 
|  | x = torch.rand(1, 32, 28, 28) | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | # conv can exist in a single-op oneDNN Graph partition but not relu | 
|  | self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) | 
|  | self.assertFused(graph, ['aten::_convolution']) | 
|  |  | 
|  | def test_rewrap_tensor_input_to_pytorch(self): | 
|  | class M(nn.Module): | 
|  | def __init__(self, eltwise_fn, data_type): | 
|  | super(M, self).__init__() | 
|  | self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True, dtype=data_type) | 
|  | self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True, dtype=data_type) | 
|  | self.eltwise = eltwise_fn | 
|  | self.adaptive_avg_pool_2d = nn.AdaptiveAvgPool2d((5, 7)) | 
|  |  | 
|  | def forward(self, x, y): | 
|  | x = self.conv1(x) | 
|  | x = self.eltwise(x) | 
|  | x = self.conv2(x) | 
|  | x = self.eltwise(x) | 
|  | x = torch.add(x, y) | 
|  | x = self.adaptive_avg_pool_2d(x) | 
|  | return x | 
|  |  | 
|  | eltwise_fn_name = 'relu' | 
|  | eltwise_fn = get_eltwise_fn(eltwise_fn_name) | 
|  | # Add bfloat16 later | 
|  | for data_type in [torch.float]: | 
|  | m = M(eltwise_fn, data_type) | 
|  | m = m.to(memory_format=torch.channels_last) | 
|  | x = torch.rand(1, 32, 28, 28, dtype=data_type).to(memory_format=torch.channels_last) | 
|  | y = torch.rand(1, 32, 28, 28, dtype=data_type).to(memory_format=torch.channels_last) | 
|  | # Simply test if the output is accurate | 
|  | # The output of the second partition is input to adaptive_avg_pool2d, which is | 
|  | # unsupported by LLGA, so it must be handled by PyTorch, which should receive | 
|  | # correct strides info of the channels-last tensor. | 
|  | graph, _ = self.checkTrace(m, [x, y]) | 
|  |  | 
|  |  | 
|  | @unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled") | 
|  | class TestModel(JitLlgaTestCase): | 
|  | @skipIfNoTorchVision | 
|  | def _test_vision(self, model_name): | 
|  | m = getattr(torchvision.models, model_name)().eval() | 
|  | x = torch.rand(1, 3, 224, 224) / 10 | 
|  | _, graph = self.checkTrace(m, [x]) | 
|  | self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm', | 
|  | 'aten::relu', 'aten::linear', | 
|  | 'aten::avg_pool2d', 'aten::max_pool2d']) | 
|  |  | 
|  |  | 
|  | for model_name, enabled in [ | 
|  | ['resnet50', True], | 
|  | ['resnext50_32x4d', True], | 
|  | ['resnext101_32x8d', True], | 
|  | ['densenet121', True], | 
|  | ['googlenet', TEST_SCIPY], | 
|  | ['mobilenet_v2', True], | 
|  | ['mnasnet1_0', True], | 
|  | ['squeezenet1_0', True], | 
|  | ['vgg16', True], | 
|  | ['alexnet', True], | 
|  | ['shufflenet_v2_x1_0', True], | 
|  | ['wide_resnet50_2', True], | 
|  | ]: | 
|  | def wrapper(mname): | 
|  | @unittest.skipIf(not enabled, 'Disabled') | 
|  | def test(self): | 
|  | return self._test_vision(mname) | 
|  | return test | 
|  |  | 
|  | setattr(TestModel, 'test_vision_%s' % model_name, wrapper(model_name)) | 
|  |  | 
|  | if __name__ == '__main__': | 
|  | run_tests() |