| from setuptools import setup, Extension, distutils, Command, find_packages |
| import setuptools.command.build_ext |
| import setuptools.command.install |
| import setuptools.command.develop |
| import setuptools.command.build_py |
| import distutils.unixccompiler |
| import distutils.command.build |
| import distutils.command.clean |
| import platform |
| import subprocess |
| import shutil |
| import sys |
| import os |
| |
| from tools.setup_helpers.env import check_env_flag |
| from tools.setup_helpers.cuda import WITH_CUDA, CUDA_HOME, CUDA_VERSION |
| from tools.setup_helpers.cudnn import WITH_CUDNN, CUDNN_LIB_DIR, CUDNN_INCLUDE_DIR |
| from tools.setup_helpers.nccl import WITH_NCCL, WITH_SYSTEM_NCCL, NCCL_LIB_DIR, \ |
| NCCL_INCLUDE_DIR, NCCL_ROOT_DIR, NCCL_SYSTEM_LIB |
| from tools.setup_helpers.nnpack import WITH_NNPACK, NNPACK_LIB_PATHS, \ |
| NNPACK_INCLUDE_DIRS |
| from tools.setup_helpers.nvtoolext import NVTOOLEXT_HOME |
| from tools.setup_helpers.split_types import split_types |
| |
| DEBUG = check_env_flag('DEBUG') |
| |
| IS_WINDOWS = (platform.system() == 'Windows') |
| IS_DARWIN = (platform.system() == 'Darwin') |
| IS_LINUX = (platform.system() == 'Linux') |
| |
| WITH_DISTRIBUTED = not check_env_flag('NO_DISTRIBUTED') and not IS_WINDOWS |
| WITH_DISTRIBUTED_MW = WITH_DISTRIBUTED and check_env_flag('WITH_DISTRIBUTED_MW') |
| |
| |
| ################################################################################ |
| # Workaround setuptools -Wstrict-prototypes warnings |
| # I lifted this code from https://stackoverflow.com/a/29634231/23845 |
| ################################################################################ |
| import distutils.sysconfig |
| cfg_vars = distutils.sysconfig.get_config_vars() |
| for key, value in cfg_vars.items(): |
| if type(value) == str: |
| cfg_vars[key] = value.replace("-Wstrict-prototypes", "") |
| |
| ################################################################################ |
| # Monkey-patch setuptools to compile in parallel |
| ################################################################################ |
| original_link = distutils.unixccompiler.UnixCCompiler.link |
| |
| |
| def parallelCCompile(self, sources, output_dir=None, macros=None, |
| include_dirs=None, debug=0, extra_preargs=None, |
| extra_postargs=None, depends=None): |
| # those lines are copied from distutils.ccompiler.CCompiler directly |
| macros, objects, extra_postargs, pp_opts, build = self._setup_compile( |
| output_dir, macros, include_dirs, sources, depends, extra_postargs) |
| cc_args = self._get_cc_args(pp_opts, debug, extra_preargs) |
| |
| # compile using a thread pool |
| import multiprocessing.pool |
| |
| def _single_compile(obj): |
| src, ext = build[obj] |
| self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts) |
| num_jobs = multiprocessing.cpu_count() |
| max_jobs = os.getenv("MAX_JOBS") |
| if max_jobs is not None: |
| num_jobs = min(num_jobs, int(max_jobs)) |
| multiprocessing.pool.ThreadPool(num_jobs).map(_single_compile, objects) |
| |
| return objects |
| |
| |
| def patched_link(self, *args, **kwargs): |
| _cxx = self.compiler_cxx |
| self.compiler_cxx = None |
| result = original_link(self, *args, **kwargs) |
| self.compiler_cxx = _cxx |
| return result |
| |
| |
| distutils.ccompiler.CCompiler.compile = parallelCCompile |
| distutils.unixccompiler.UnixCCompiler.link = patched_link |
| |
| ################################################################################ |
| # Custom build commands |
| ################################################################################ |
| |
| dep_libs = [ |
| 'nccl', 'ATen', |
| 'libshm', 'libshm_windows', 'gloo', 'THD', 'nanopb', |
| ] |
| |
| |
| def build_libs(libs): |
| for lib in libs: |
| assert lib in dep_libs, 'invalid lib: {}'.format(lib) |
| if IS_WINDOWS: |
| build_libs_cmd = ['torch\\lib\\build_libs.bat'] |
| else: |
| build_libs_cmd = ['bash', 'torch/lib/build_libs.sh'] |
| my_env = os.environ.copy() |
| my_env["PYTORCH_PYTHON"] = sys.executable |
| if WITH_SYSTEM_NCCL: |
| my_env["NCCL_ROOT_DIR"] = NCCL_ROOT_DIR |
| if WITH_CUDA: |
| my_env["CUDA_BIN_PATH"] = CUDA_HOME |
| build_libs_cmd += ['--with-cuda'] |
| if WITH_CUDNN: |
| my_env["CUDNN_LIB_DIR"] = CUDNN_LIB_DIR |
| my_env["CUDNN_INCLUDE_DIR"] = CUDNN_INCLUDE_DIR |
| |
| if subprocess.call(build_libs_cmd + libs, env=my_env) != 0: |
| sys.exit(1) |
| |
| if 'ATen' in libs: |
| from tools.nnwrap import generate_wrappers as generate_nn_wrappers |
| generate_nn_wrappers() |
| |
| |
| class build_deps(Command): |
| user_options = [] |
| |
| def initialize_options(self): |
| pass |
| |
| def finalize_options(self): |
| pass |
| |
| def run(self): |
| libs = [] |
| if WITH_NCCL and not WITH_SYSTEM_NCCL: |
| libs += ['nccl'] |
| libs += ['ATen', 'nanopb'] |
| if IS_WINDOWS: |
| libs += ['libshm_windows'] |
| else: |
| libs += ['libshm'] |
| if WITH_DISTRIBUTED: |
| if sys.platform.startswith('linux'): |
| libs += ['gloo'] |
| libs += ['THD'] |
| build_libs(libs) |
| |
| |
| build_dep_cmds = {} |
| |
| for lib in dep_libs: |
| # wrap in function to capture lib |
| class build_dep(build_deps): |
| description = 'Build {} external library'.format(lib) |
| |
| def run(self): |
| build_libs([self.lib]) |
| build_dep.lib = lib |
| build_dep_cmds['build_' + lib.lower()] = build_dep |
| |
| |
| class build_module(Command): |
| user_options = [] |
| |
| def initialize_options(self): |
| pass |
| |
| def finalize_options(self): |
| pass |
| |
| def run(self): |
| self.run_command('build_py') |
| self.run_command('build_ext') |
| |
| |
| class build_py(setuptools.command.build_py.build_py): |
| |
| def run(self): |
| self.create_version_file() |
| setuptools.command.build_py.build_py.run(self) |
| |
| @staticmethod |
| def create_version_file(): |
| global version, cwd |
| print('-- Building version ' + version) |
| version_path = os.path.join(cwd, 'torch', 'version.py') |
| with open(version_path, 'w') as f: |
| f.write("__version__ = '{}'\n".format(version)) |
| # NB: This is not 100% accurate, because you could have built the |
| # library code with DEBUG, but csrc without DEBUG (in which case |
| # this would claim to be a release build when it's not.) |
| f.write("debug = {}\n".format(repr(DEBUG))) |
| f.write("cuda = {}\n".format(repr(CUDA_VERSION))) |
| |
| |
| class develop(setuptools.command.develop.develop): |
| |
| def run(self): |
| build_py.create_version_file() |
| setuptools.command.develop.develop.run(self) |
| |
| |
| def monkey_patch_THD_link_flags(): |
| ''' |
| THD's dynamic link deps are not determined until after build_deps is run |
| So, we need to monkey-patch them in later |
| ''' |
| # read tmp_install_path/THD_deps.txt for THD's dynamic linkage deps |
| with open(tmp_install_path + '/THD_deps.txt', 'r') as f: |
| thd_deps_ = f.read() |
| thd_deps = [] |
| # remove empty lines |
| for l in thd_deps_.split(';'): |
| if l != '': |
| thd_deps.append(l) |
| |
| C.extra_link_args += thd_deps |
| |
| |
| class build_ext(setuptools.command.build_ext.build_ext): |
| |
| def run(self): |
| |
| # Print build options |
| if WITH_NUMPY: |
| print('-- Building with NumPy bindings') |
| else: |
| print('-- NumPy not found') |
| if WITH_CUDNN: |
| print('-- Detected cuDNN at ' + CUDNN_LIB_DIR + ', ' + CUDNN_INCLUDE_DIR) |
| else: |
| print('-- Not using cuDNN') |
| if WITH_CUDA: |
| print('-- Detected CUDA at ' + CUDA_HOME) |
| else: |
| print('-- Not using CUDA') |
| if WITH_NCCL and WITH_SYSTEM_NCCL: |
| print('-- Using system provided NCCL library at ' + |
| NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR) |
| elif WITH_NCCL: |
| print('-- Building NCCL library') |
| else: |
| print('-- Not using NCCL') |
| if WITH_DISTRIBUTED: |
| print('-- Building with distributed package ') |
| monkey_patch_THD_link_flags() |
| else: |
| print('-- Building without distributed package') |
| |
| # Do we actually need this here? |
| if WITH_NNPACK: |
| nnpack_dir = NNPACK_LIB_PATHS[0] |
| print('-- Detected NNPACK at ' + nnpack_dir) |
| else: |
| print('-- Not using NNPACK') |
| # cwrap depends on pyyaml, so we can't import it earlier |
| from tools.cwrap import cwrap |
| from tools.cwrap.plugins.THPPlugin import THPPlugin |
| from tools.cwrap.plugins.ArgcountSortPlugin import ArgcountSortPlugin |
| from tools.cwrap.plugins.AutoGPU import AutoGPU |
| from tools.cwrap.plugins.BoolOption import BoolOption |
| from tools.cwrap.plugins.KwargsPlugin import KwargsPlugin |
| from tools.cwrap.plugins.NullableArguments import NullableArguments |
| |
| from tools.cwrap.plugins.CuDNNPlugin import CuDNNPlugin |
| from tools.cwrap.plugins.WrapDim import WrapDim |
| from tools.cwrap.plugins.AssertNDim import AssertNDim |
| |
| from tools.cwrap.plugins.Broadcast import Broadcast |
| from tools.cwrap.plugins.ProcessorSpecificPlugin import ProcessorSpecificPlugin |
| from tools.autograd.gen_variable_type import gen_variable_type |
| from tools.jit.gen_jit_dispatch import gen_jit_dispatch |
| thp_plugin = THPPlugin() |
| |
| cwrap('torch/csrc/generic/TensorMethods.cwrap', plugins=[ |
| ProcessorSpecificPlugin(), BoolOption(), thp_plugin, |
| AutoGPU(condition='IS_CUDA'), ArgcountSortPlugin(), KwargsPlugin(), |
| AssertNDim(), WrapDim(), Broadcast() |
| ]) |
| cwrap('torch/csrc/cudnn/cuDNN.cwrap', plugins=[ |
| CuDNNPlugin(), NullableArguments() |
| ]) |
| # Build ATen based Variable classes |
| autograd_gen_dir = 'torch/csrc/autograd/generated' |
| jit_gen_dir = 'torch/csrc/jit/generated' |
| for d in (autograd_gen_dir, jit_gen_dir): |
| if not os.path.exists(d): |
| os.mkdir(d) |
| gen_variable_type( |
| 'torch/lib/tmp_install/share/ATen/Declarations.yaml', |
| autograd_gen_dir) |
| gen_jit_dispatch( |
| 'torch/lib/tmp_install/share/ATen/Declarations.yaml', |
| jit_gen_dir) |
| |
| if IS_WINDOWS: |
| build_temp = self.build_temp |
| build_dir = 'torch/csrc' |
| |
| ext_filename = self.get_ext_filename('_C') |
| lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib' |
| |
| _C_LIB = os.path.join(build_temp, build_dir, lib_filename).replace('\\', '/') |
| |
| THNN.extra_link_args += [_C_LIB] |
| if WITH_CUDA: |
| THCUNN.extra_link_args += [_C_LIB] |
| else: |
| # To generate .obj files for AutoGPU for the export class |
| # a header file cannot build, so it has to be copied to someplace as a source file |
| if os.path.exists("torch/csrc/generated/AutoGPU_cpu_win.cpp"): |
| os.remove("torch/csrc/generated/AutoGPU_cpu_win.cpp") |
| shutil.copyfile("torch/csrc/cuda/AutoGPU.h", "torch/csrc/generated/AutoGPU_cpu_win.cpp") |
| |
| # It's an old-style class in Python 2.7... |
| setuptools.command.build_ext.build_ext.run(self) |
| |
| |
| class build(distutils.command.build.build): |
| sub_commands = [ |
| ('build_deps', lambda self: True), |
| ] + distutils.command.build.build.sub_commands |
| |
| |
| class install(setuptools.command.install.install): |
| |
| def run(self): |
| if not self.skip_build: |
| self.run_command('build_deps') |
| setuptools.command.install.install.run(self) |
| |
| |
| class clean(distutils.command.clean.clean): |
| |
| def run(self): |
| import glob |
| with open('.gitignore', 'r') as f: |
| ignores = f.read() |
| for wildcard in filter(bool, ignores.split('\n')): |
| for filename in glob.glob(wildcard): |
| try: |
| os.remove(filename) |
| except OSError: |
| shutil.rmtree(filename, ignore_errors=True) |
| |
| # It's an old-style class in Python 2.7... |
| distutils.command.clean.clean.run(self) |
| |
| |
| ################################################################################ |
| # Configure compile flags |
| ################################################################################ |
| |
| include_dirs = [] |
| library_dirs = [] |
| extra_link_args = [] |
| |
| if IS_WINDOWS: |
| extra_compile_args = ['/Z7', '/EHa', '/DNOMINMAX' |
| # /Z7 turns on symbolic debugging information in .obj files |
| # /EHa is about native C++ catch support for asynchronous |
| # structured exception handling (SEH) |
| # /DNOMINMAX removes builtin min/max functions |
| ] |
| else: |
| extra_compile_args = ['-std=c++11', '-Wno-write-strings', |
| # Python 2.6 requires -fno-strict-aliasing, see |
| # http://legacy.python.org/dev/peps/pep-3123/ |
| '-fno-strict-aliasing', |
| # Clang has an unfixed bug leading to spurious missing |
| # braces warnings, see |
| # https://bugs.llvm.org/show_bug.cgi?id=21629 |
| '-Wno-missing-braces'] |
| |
| cwd = os.path.dirname(os.path.abspath(__file__)) |
| lib_path = os.path.join(cwd, "torch", "lib") |
| |
| |
| # Check if you remembered to check out submodules |
| def check_file(f): |
| if not os.path.exists(f): |
| print("Could not find {}".format(f)) |
| print("Did you run 'git submodule update --init'?") |
| sys.exit(1) |
| check_file(os.path.join(lib_path, "gloo", "CMakeLists.txt")) |
| check_file(os.path.join(lib_path, "nanopb", "CMakeLists.txt")) |
| check_file(os.path.join(lib_path, "pybind11", "CMakeLists.txt")) |
| |
| tmp_install_path = lib_path + "/tmp_install" |
| include_dirs += [ |
| cwd, |
| os.path.join(cwd, "torch", "csrc"), |
| lib_path + "/pybind11/include", |
| tmp_install_path + "/include", |
| tmp_install_path + "/include/TH", |
| tmp_install_path + "/include/THNN", |
| tmp_install_path + "/include/ATen", |
| ] |
| |
| library_dirs.append(lib_path) |
| |
| # we specify exact lib names to avoid conflict with lua-torch installs |
| ATEN_LIB = os.path.join(lib_path, 'libATen.so.1') |
| THD_LIB = os.path.join(lib_path, 'libTHD.a') |
| NCCL_LIB = os.path.join(lib_path, 'libnccl.so.1') |
| |
| # static library only |
| NANOPB_STATIC_LIB = os.path.join(lib_path, 'libprotobuf-nanopb.a') |
| |
| if IS_DARWIN: |
| ATEN_LIB = os.path.join(lib_path, 'libATen.1.dylib') |
| NCCL_LIB = os.path.join(lib_path, 'libnccl.1.dylib') |
| |
| if IS_WINDOWS: |
| ATEN_LIB = os.path.join(lib_path, 'ATen.lib') |
| NANOPB_STATIC_LIB = os.path.join(lib_path, 'protobuf-nanopb.lib') |
| |
| main_compile_args = ['-D_THP_CORE'] |
| main_libraries = ['shm'] |
| main_link_args = [ATEN_LIB, NANOPB_STATIC_LIB] |
| main_sources = [ |
| "torch/csrc/PtrWrapper.cpp", |
| "torch/csrc/Module.cpp", |
| "torch/csrc/Generator.cpp", |
| "torch/csrc/Size.cpp", |
| "torch/csrc/Exceptions.cpp", |
| "torch/csrc/Storage.cpp", |
| "torch/csrc/DynamicTypes.cpp", |
| "torch/csrc/assertions.cpp", |
| "torch/csrc/byte_order.cpp", |
| "torch/csrc/utils.cpp", |
| "torch/csrc/expand_utils.cpp", |
| "torch/csrc/utils/invalid_arguments.cpp", |
| "torch/csrc/utils/object_ptr.cpp", |
| "torch/csrc/utils/python_arg_parser.cpp", |
| "torch/csrc/utils/tensor_geometry.cpp", |
| "torch/csrc/utils/tuple_parser.cpp", |
| "torch/csrc/allocators.cpp", |
| "torch/csrc/serialization.cpp", |
| "torch/csrc/jit/init.cpp", |
| "torch/csrc/jit/interpreter.cpp", |
| "torch/csrc/jit/ir.cpp", |
| "torch/csrc/jit/python_ir.cpp", |
| "torch/csrc/jit/test_jit.cpp", |
| "torch/csrc/jit/tracer.cpp", |
| "torch/csrc/jit/python_tracer.cpp", |
| "torch/csrc/jit/interned_strings.cpp", |
| "torch/csrc/jit/type.cpp", |
| "torch/csrc/jit/export.cpp", |
| "torch/csrc/jit/python_arg_flatten.cpp", |
| "torch/csrc/jit/python_compiled_function.cpp", |
| "torch/csrc/jit/passes/graph_fuser.cpp", |
| "torch/csrc/jit/passes/onnx.cpp", |
| "torch/csrc/jit/passes/dead_code_elimination.cpp", |
| "torch/csrc/jit/passes/common_subexpression_elimination.cpp", |
| "torch/csrc/jit/passes/peephole.cpp", |
| "torch/csrc/jit/passes/inplace_check.cpp", |
| "torch/csrc/jit/passes/onnx/peephole.cpp", |
| "torch/csrc/jit/generated/aten_dispatch.cpp", |
| "torch/csrc/autograd/init.cpp", |
| "torch/csrc/autograd/engine.cpp", |
| "torch/csrc/autograd/function.cpp", |
| "torch/csrc/autograd/variable.cpp", |
| "torch/csrc/autograd/saved_variable.cpp", |
| "torch/csrc/autograd/input_buffer.cpp", |
| "torch/csrc/autograd/profiler.cpp", |
| "torch/csrc/autograd/python_function.cpp", |
| "torch/csrc/autograd/python_cpp_function.cpp", |
| "torch/csrc/autograd/python_variable.cpp", |
| "torch/csrc/autograd/python_engine.cpp", |
| "torch/csrc/autograd/python_hook.cpp", |
| "torch/csrc/autograd/functions/jit_closure.cpp", |
| "torch/csrc/autograd/generated/VariableType.cpp", |
| "torch/csrc/autograd/generated/Functions.cpp", |
| "torch/csrc/autograd/generated/python_variable_methods.cpp", |
| "torch/csrc/autograd/generated/python_functions.cpp", |
| "torch/csrc/autograd/generated/python_nn_functions.cpp", |
| "torch/csrc/autograd/functions/batch_normalization.cpp", |
| "torch/csrc/autograd/functions/convolution.cpp", |
| "torch/csrc/autograd/functions/basic_ops.cpp", |
| "torch/csrc/autograd/functions/tensor.cpp", |
| "torch/csrc/autograd/functions/accumulate_grad.cpp", |
| "torch/csrc/autograd/functions/special.cpp", |
| "torch/csrc/autograd/functions/utils.cpp", |
| "torch/csrc/autograd/functions/init.cpp", |
| "torch/csrc/autograd/functions/onnx/convolution.cpp", |
| "torch/csrc/autograd/functions/onnx/batch_normalization.cpp", |
| "torch/csrc/autograd/functions/onnx/basic_ops.cpp", |
| "torch/csrc/onnx/onnx.pb.cpp", |
| "torch/csrc/onnx/onnx.cpp", |
| ] |
| main_sources += split_types("torch/csrc/Tensor.cpp") |
| |
| try: |
| import numpy as np |
| include_dirs += [np.get_include()] |
| extra_compile_args += ['-DWITH_NUMPY'] |
| WITH_NUMPY = True |
| except ImportError: |
| WITH_NUMPY = False |
| |
| if WITH_DISTRIBUTED: |
| extra_compile_args += ['-DWITH_DISTRIBUTED'] |
| main_sources += [ |
| "torch/csrc/distributed/Module.cpp", |
| ] |
| if WITH_DISTRIBUTED_MW: |
| main_sources += [ |
| "torch/csrc/distributed/Tensor.cpp", |
| "torch/csrc/distributed/Storage.cpp", |
| ] |
| extra_compile_args += ['-DWITH_DISTRIBUTED_MW'] |
| include_dirs += [tmp_install_path + "/include/THD"] |
| main_link_args += [THD_LIB] |
| |
| if IS_WINDOWS and not WITH_CUDA: |
| main_sources += ["torch/csrc/generated/AutoGPU_cpu_win.cpp"] |
| |
| if WITH_CUDA: |
| nvtoolext_lib_name = None |
| if IS_WINDOWS: |
| cuda_lib_path = CUDA_HOME + '/lib/x64/' |
| nvtoolext_lib_path = NVTOOLEXT_HOME + '/lib/x64/' |
| nvtoolext_include_path = os.path.join(NVTOOLEXT_HOME, 'include') |
| |
| library_dirs.append(nvtoolext_lib_path) |
| include_dirs.append(nvtoolext_include_path) |
| |
| nvtoolext_lib_name = 'nvToolsExt64_1' |
| |
| # MSVC doesn't support runtime symbol resolving, `nvrtc` and `cuda` should be linked |
| main_libraries += ['nvrtc', 'cuda'] |
| else: |
| cuda_lib_dirs = ['lib64', 'lib'] |
| |
| for lib_dir in cuda_lib_dirs: |
| cuda_lib_path = os.path.join(CUDA_HOME, lib_dir) |
| if os.path.exists(cuda_lib_path): |
| break |
| extra_link_args.append('-Wl,-rpath,' + cuda_lib_path) |
| |
| nvtoolext_lib_name = 'nvToolsExt' |
| |
| library_dirs.append(cuda_lib_path) |
| cuda_include_path = os.path.join(CUDA_HOME, 'include') |
| include_dirs.append(cuda_include_path) |
| include_dirs.append(tmp_install_path + "/include/THCUNN") |
| extra_compile_args += ['-DWITH_CUDA'] |
| extra_compile_args += ['-DCUDA_LIB_PATH=' + cuda_lib_path] |
| main_libraries += ['cudart', nvtoolext_lib_name] |
| main_sources += [ |
| "torch/csrc/cuda/Module.cpp", |
| "torch/csrc/cuda/Storage.cpp", |
| "torch/csrc/cuda/Stream.cpp", |
| "torch/csrc/cuda/AutoGPU.cpp", |
| "torch/csrc/cuda/utils.cpp", |
| "torch/csrc/cuda/expand_utils.cpp", |
| "torch/csrc/cuda/serialization.cpp", |
| "torch/csrc/jit/fusion_compiler.cpp", |
| ] |
| main_sources += split_types("torch/csrc/cuda/Tensor.cpp") |
| |
| if WITH_NCCL: |
| if WITH_SYSTEM_NCCL: |
| main_link_args += [NCCL_SYSTEM_LIB] |
| include_dirs.append(NCCL_INCLUDE_DIR) |
| else: |
| main_link_args += [NCCL_LIB] |
| extra_compile_args += ['-DWITH_NCCL'] |
| main_sources += [ |
| "torch/csrc/cuda/nccl.cpp", |
| ] |
| if WITH_CUDNN: |
| main_libraries += ['cudnn'] |
| library_dirs.append(CUDNN_LIB_DIR) |
| # NOTE: these are at the front, in case there's another cuDNN in CUDA path |
| include_dirs.insert(0, CUDNN_INCLUDE_DIR) |
| if not IS_WINDOWS: |
| extra_link_args.insert(0, '-Wl,-rpath,' + CUDNN_LIB_DIR) |
| main_sources += [ |
| "torch/csrc/cudnn/BatchNorm.cpp", |
| "torch/csrc/cudnn/Conv.cpp", |
| "torch/csrc/cudnn/cuDNN.cpp", |
| "torch/csrc/cudnn/GridSampler.cpp", |
| "torch/csrc/cudnn/AffineGridGenerator.cpp", |
| "torch/csrc/cudnn/Types.cpp", |
| "torch/csrc/cudnn/Handles.cpp", |
| ] |
| extra_compile_args += ['-DWITH_CUDNN'] |
| |
| if WITH_NNPACK: |
| include_dirs.extend(NNPACK_INCLUDE_DIRS) |
| main_link_args.extend(NNPACK_LIB_PATHS) |
| main_sources += [ |
| "torch/csrc/nnpack/NNPACK.cpp", |
| ] |
| extra_compile_args += ['-DWITH_NNPACK'] |
| |
| if DEBUG: |
| if IS_WINDOWS: |
| extra_link_args.append('/DEBUG:FULL') |
| else: |
| extra_compile_args += ['-O0', '-g'] |
| extra_link_args += ['-O0', '-g'] |
| |
| if os.getenv('PYTORCH_BINARY_BUILD') and platform.system() == 'Linux': |
| print('PYTORCH_BINARY_BUILD found. Static linking libstdc++ on Linux') |
| # get path of libstdc++ and link manually. |
| # for reasons unknown, -static-libstdc++ doesn't fully link some symbols |
| CXXNAME = os.getenv('CXX', 'g++') |
| STDCPP_LIB = subprocess.check_output([CXXNAME, '-print-file-name=libstdc++.a']) |
| STDCPP_LIB = STDCPP_LIB[:-1] |
| if type(STDCPP_LIB) != str: # python 3 |
| STDCPP_LIB = STDCPP_LIB.decode(sys.stdout.encoding) |
| main_link_args += [STDCPP_LIB] |
| version_script = os.path.abspath("tools/pytorch.version") |
| extra_link_args += ['-Wl,--version-script=' + version_script] |
| |
| |
| def make_relative_rpath(path): |
| if IS_DARWIN: |
| return '-Wl,-rpath,@loader_path/' + path |
| elif IS_WINDOWS: |
| return '' |
| else: |
| return '-Wl,-rpath,$ORIGIN/' + path |
| |
| ################################################################################ |
| # Declare extensions and package |
| ################################################################################ |
| |
| extensions = [] |
| packages = find_packages(exclude=('tools', 'tools.*',)) |
| C = Extension("torch._C", |
| libraries=main_libraries, |
| sources=main_sources, |
| language='c++', |
| extra_compile_args=main_compile_args + extra_compile_args, |
| include_dirs=include_dirs, |
| library_dirs=library_dirs, |
| extra_link_args=extra_link_args + main_link_args + [make_relative_rpath('lib')], |
| ) |
| extensions.append(C) |
| |
| if not IS_WINDOWS: |
| DL = Extension("torch._dl", |
| sources=["torch/csrc/dl.c"], |
| language='c', |
| ) |
| extensions.append(DL) |
| |
| THNN = Extension("torch._thnn._THNN", |
| sources=['torch/csrc/nn/THNN.cpp'], |
| language='c++', |
| extra_compile_args=extra_compile_args, |
| include_dirs=include_dirs, |
| extra_link_args=extra_link_args + [ |
| ATEN_LIB, |
| make_relative_rpath('../lib'), |
| ] |
| ) |
| extensions.append(THNN) |
| |
| if WITH_CUDA: |
| thnvrtc_link_flags = extra_link_args + [make_relative_rpath('lib')] |
| if IS_LINUX: |
| thnvrtc_link_flags = thnvrtc_link_flags + ['-Wl,--no-as-needed'] |
| # these have to be specified as -lcuda in link_flags because they |
| # have to come right after the `no-as-needed` option |
| if IS_WINDOWS: |
| thnvrtc_link_flags += ['cuda.lib', 'nvrtc.lib'] |
| else: |
| thnvrtc_link_flags += ['-lcuda', '-lnvrtc'] |
| THNVRTC = Extension("torch._nvrtc", |
| sources=['torch/csrc/nvrtc.cpp'], |
| language='c++', |
| include_dirs=include_dirs, |
| library_dirs=library_dirs + [cuda_lib_path + '/stubs'], |
| extra_link_args=thnvrtc_link_flags, |
| ) |
| extensions.append(THNVRTC) |
| |
| THCUNN = Extension("torch._thnn._THCUNN", |
| sources=['torch/csrc/nn/THCUNN.cpp'], |
| language='c++', |
| extra_compile_args=extra_compile_args, |
| include_dirs=include_dirs, |
| extra_link_args=extra_link_args + [ |
| ATEN_LIB, |
| make_relative_rpath('../lib'), |
| ] |
| ) |
| extensions.append(THCUNN) |
| |
| version = '0.4.0a0' |
| if os.getenv('PYTORCH_BUILD_VERSION'): |
| assert os.getenv('PYTORCH_BUILD_NUMBER') is not None |
| version = os.getenv('PYTORCH_BUILD_VERSION') \ |
| + '_' + os.getenv('PYTORCH_BUILD_NUMBER') |
| else: |
| try: |
| sha = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=cwd).decode('ascii').strip() |
| version += '+' + sha[:7] |
| except Exception: |
| pass |
| |
| cmdclass = { |
| 'build': build, |
| 'build_py': build_py, |
| 'build_ext': build_ext, |
| 'build_deps': build_deps, |
| 'build_module': build_module, |
| 'develop': develop, |
| 'install': install, |
| 'clean': clean, |
| } |
| cmdclass.update(build_dep_cmds) |
| |
| |
| setup(name="torch", version=version, |
| description="Tensors and Dynamic neural networks in Python with strong GPU acceleration", |
| ext_modules=extensions, |
| cmdclass=cmdclass, |
| packages=packages, |
| package_data={'torch': [ |
| 'lib/*.so*', 'lib/*.dylib*', 'lib/*.dll', |
| 'lib/torch_shm_manager', |
| 'lib/*.h', |
| 'lib/include/TH/*.h', 'lib/include/TH/generic/*.h', |
| 'lib/include/THC/*.h', 'lib/include/THC/generic/*.h', |
| 'lib/include/ATen/*.h', |
| ]}, |
| install_requires=['pyyaml', 'numpy'], |
| ) |