| from typing import Type |
| from torch import optim |
| from .functional_adagrad import _FunctionalAdagrad |
| from .functional_adam import _FunctionalAdam |
| from .functional_adamw import _FunctionalAdamW |
| from .functional_sgd import _FunctionalSGD |
| from .functional_adadelta import _FunctionalAdadelta |
| from .functional_rmsprop import _FunctionalRMSprop |
| from .functional_rprop import _FunctionalRprop |
| from .functional_adamax import _FunctionalAdamax |
| |
| # dict to map a user passed in optimizer_class to a functional |
| # optimizer class if we have already defined inside the |
| # distributed.optim package, this is so that we hide the |
| # functional optimizer to user and still provide the same API. |
| functional_optim_map = { |
| optim.Adagrad: _FunctionalAdagrad, |
| optim.Adam: _FunctionalAdam, |
| optim.AdamW: _FunctionalAdamW, |
| optim.SGD: _FunctionalSGD, |
| optim.Adadelta: _FunctionalAdadelta, |
| optim.RMSprop: _FunctionalRMSprop, |
| optim.Rprop: _FunctionalRprop, |
| optim.Adamax: _FunctionalAdamax, |
| } |
| |
| def as_functional_optim(optim_cls: Type, *args, **kwargs): |
| try: |
| functional_cls = functional_optim_map[optim_cls] |
| except KeyError: |
| raise ValueError(f"Optimizer {optim_cls} does not have a functional counterpart!") |
| |
| return _create_functional_optim(functional_cls, *args, **kwargs) |
| |
| def _create_functional_optim(functional_optim_cls: Type, *args, **kwargs): |
| return functional_optim_cls( |
| [], |
| *args, |
| **kwargs, |
| _allow_empty_param_list=True, |
| ) |