| ## @package optimizer |
| # Module caffe2.python.optimizer |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from collections import namedtuple |
| from caffe2.python import core |
| from caffe2.proto import caffe2_pb2 |
| |
| _OPTIMIZER_ITERATION_NAME = "optimizer_iteration" |
| |
| class Optimizer(object): |
| def __init__(self): |
| AuxParams = namedtuple("AuxParams", ["local", "shared"]) |
| self._aux_params = AuxParams(local=[], shared=[]) |
| |
| def __call__(self, net, param_init_net, param, grad): |
| raise NotImplementedError() |
| |
| @staticmethod |
| def build_lr(net, param_init_net, base_learning_rate, |
| learning_rate_blob="lr", policy="fixed", |
| iter_val=0, **kwargs): |
| if not param_init_net.BlobIsDefined(_OPTIMIZER_ITERATION_NAME): |
| # Add training operators. |
| with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)): |
| iteration = param_init_net.ConstantFill( |
| [], _OPTIMIZER_ITERATION_NAME, shape=[1], |
| value=iter_val, |
| dtype=core.DataType.INT32) |
| |
| iter_mutex = param_init_net.CreateMutex([], ["iteration_mutex"]) |
| net.AtomicIter([iter_mutex, iteration], [iteration]) |
| else: |
| iteration = param_init_net.GetBlobRef(_OPTIMIZER_ITERATION_NAME) |
| |
| # There is one interesting thing here: since we are minimizing, we are |
| # doing "descent" so the learning rate is set to be negative. |
| lr = net.LearningRate( |
| [iteration], |
| learning_rate_blob, |
| base_lr=-base_learning_rate, |
| policy=policy, |
| **kwargs |
| ) |
| return lr, iteration |
| |
| @staticmethod |
| def dedup(net, sparse_dedup_aggregator, grad): |
| assert (isinstance(grad, core.GradientSlice)) |
| if sparse_dedup_aggregator: |
| return net.DeduplicateGradientSlices( |
| grad, aggregator=sparse_dedup_aggregator) |
| else: |
| return grad |
| |
| def get_auxiliary_parameters(self): |
| """Returns a list of auxiliary parameters. |
| |
| Returns: |
| aux_params: A namedtuple, AuxParams. |
| |
| aux_params.local stores a list of blobs. Each blob is a local |
| auxiliary parameter. A local auxiliary parameter is a parameter in |
| parallel to a learning rate parameter. Take adagrad as an example, |
| the local auxiliary parameter is the squared sum parameter, because |
| every learning rate has a squared sum associated with it. |
| |
| aux_params.shared also stores a list of blobs. Each blob is a shared |
| auxiliary parameter. A shared auxiliary parameter is a parameter |
| that is shared across all the learning rate parameters. Take adam as |
| an example, the iteration parameter is a shared parameter, because |
| all the learning rates share the same iteration parameter. |
| """ |
| return self._aux_params |
| |
| |
| class SgdOptimizer(Optimizer): |
| def __init__(self, base_learning_rate=0.01, policy='fixed', |
| momentum=0.0, **kwargs): |
| super(SgdOptimizer, self).__init__() |
| self.base_learning_rate = base_learning_rate |
| self.policy = policy |
| self.momentum = momentum |
| self.init_kwargs = kwargs |
| |
| def __call__(self, net, param_init_net, param, grad): |
| if self.base_learning_rate <= 0: |
| return |
| |
| lr, _ = self.build_lr( |
| net, param_init_net, |
| base_learning_rate=self.base_learning_rate, |
| learning_rate_blob=str(param) + "_lr", |
| policy=self.policy, |
| **(self.init_kwargs) |
| ) |
| |
| ONE = param_init_net.ConstantFill([], "ONE", shape=[1], value=1.0) |
| self._aux_params.shared.append(ONE) |
| |
| if self.momentum > 0: |
| momentum_data = param_init_net.ConstantFill( |
| param, str(param) + "_momentum", value=0.) |
| self._aux_params.local.append(momentum_data) |
| |
| if isinstance(grad, core.GradientSlice): |
| assert self.momentum == 0., "Doesn't support momentum for sparse" |
| net.ScatterWeightedSum( |
| [param, ONE, grad.indices, grad.values, lr], |
| param |
| ) |
| else: |
| if self.momentum > 0.: |
| net.MomentumSGD( |
| [grad, momentum_data, lr], [grad, momentum_data], |
| momentum=self.momentum, |
| nesterov=1) |
| coeff = ONE |
| else: |
| coeff = lr |
| |
| net.WeightedSum( |
| [param, ONE, grad, coeff], |
| param |
| ) |
| |
| |
| class AdagradOptimizer(Optimizer): |
| def __init__(self, alpha=0.01, epsilon=1e-4, policy="fixed", |
| sparse_dedup_aggregator=None, engine='', **kwargs): |
| super(AdagradOptimizer, self).__init__() |
| self.alpha = alpha |
| self.epsilon = epsilon |
| self.policy = policy |
| self.sparse_dedup_aggregator = sparse_dedup_aggregator |
| self.engine = engine |
| self.init_kwargs = kwargs |
| |
| def __call__(self, net, param_init_net, param, grad): |
| if self.alpha <= 0: |
| return |
| |
| lr, _ = self.build_lr( |
| net, param_init_net, |
| base_learning_rate=self.alpha, |
| learning_rate_blob=str(param) + "_lr", |
| policy=self.policy, |
| **(self.init_kwargs) |
| ) |
| |
| param_squared_sum = param_init_net.ConstantFill( |
| [param], |
| str(param) + "_squared_sum", |
| value=0.0 |
| ) |
| self._aux_params.local.append(param_squared_sum) |
| |
| if isinstance(grad, core.GradientSlice): |
| grad = self.dedup(net, self.sparse_dedup_aggregator, grad) |
| net.SparseAdagrad( |
| [param, param_squared_sum, grad.indices, grad.values, lr], |
| [param, param_squared_sum], |
| epsilon=self.epsilon, |
| engine=self.engine |
| ) |
| else: |
| net.Adagrad( |
| [param, param_squared_sum, grad, lr], |
| [param, param_squared_sum], |
| epsilon=self.epsilon, |
| engine=self.engine |
| ) |
| |
| |
| class FtrlOptimizer(Optimizer): |
| def __init__(self, alpha=0.01, beta=1e-4, lambda1=0, lambda2=0, |
| sparse_dedup_aggregator=None, engine=''): |
| super(FtrlOptimizer, self).__init__() |
| self.alpha = alpha |
| self.beta = beta |
| self.lambda1 = lambda1 |
| self.lambda2 = lambda2 |
| self.sparse_dedup_aggregator = sparse_dedup_aggregator |
| self.engine = engine |
| |
| def __call__(self, net, param_init_net, param, grad): |
| if self.alpha <= 0: |
| return |
| |
| nz = param_init_net.ConstantFill( |
| [param], |
| str(param) + "_ftrl_nz", |
| extra_shape=[2], |
| value=0.0 |
| ) |
| self._aux_params.local.append(nz) |
| if isinstance(grad, core.GradientSlice): |
| grad = self.dedup(net, self.sparse_dedup_aggregator, grad) |
| net.SparseFtrl( |
| [param, nz, grad.indices, grad.values], |
| [param, nz], |
| engine=self.engine, |
| alpha=self.alpha, |
| beta=self.beta, |
| lambda1=self.lambda1, |
| lambda2=self.lambda2 |
| ) |
| else: |
| net.Ftrl( |
| [param, nz, grad], |
| [param, nz], |
| engine=self.engine, |
| alpha=self.alpha, |
| beta=self.beta, |
| lambda1=self.lambda1, |
| lambda2=self.lambda2 |
| ) |
| |
| class AdamOptimizer(Optimizer): |
| def __init__(self, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, |
| policy='fixed', sparse_dedup_aggregator=None, |
| engine='', **kwargs): |
| super(AdamOptimizer, self).__init__() |
| self.alpha = alpha |
| self.beta1 = beta1 |
| self.beta2 = beta2 |
| self.epsilon = epsilon |
| self.policy = policy |
| self.sparse_dedup_aggregator = sparse_dedup_aggregator |
| self.engine = engine |
| self.init_kwargs = kwargs |
| |
| def __call__(self, net, param_init_net, param, grad): |
| if self.alpha <= 0: |
| return |
| |
| lr, iteration = self.build_lr( |
| net, param_init_net, |
| base_learning_rate=self.alpha, |
| learning_rate_blob=str(param) + "_lr", |
| policy=self.policy, |
| **(self.init_kwargs) |
| ) |
| |
| m1 = param_init_net.ConstantFill( |
| [param], |
| param + "_first_moment", |
| value=0.0 |
| ) |
| m2 = param_init_net.ConstantFill( |
| [param], |
| param + "_second_moment", |
| value=0.0 |
| ) |
| self._aux_params.shared.append(iteration) |
| self._aux_params.local.append(m1) |
| self._aux_params.local.append(m2) |
| if isinstance(grad, core.GradientSlice): |
| grad = self.dedup(net, self.sparse_dedup_aggregator, grad) |
| net.SparseAdam( |
| [param, m1, m2, grad.indices, grad.values, lr, iteration], |
| [param, m1, m2], |
| beta1=self.beta1, |
| beta2=self.beta2, |
| epsilon=self.epsilon |
| ) |
| |
| else: |
| net.Adam( |
| [param, m1, m2, grad, lr, iteration], |
| [param, m1, m2], |
| beta1=self.beta1, |
| beta2=self.beta2, |
| epsilon=self.epsilon) |
| |
| |
| def build_sgd(model, base_learning_rate, **kwargs): |
| sgd_optimizer = SgdOptimizer(base_learning_rate, **kwargs) |
| for param, grad in model.GetOptimizationPairs().items(): |
| sgd_optimizer(model.net, model.param_init_net, param, grad) |
| return sgd_optimizer |
| |
| |
| def build_ftrl(model, engine="SIMD", **kwargs): |
| if engine == "SIMD": |
| assert core.IsOperator('Ftrl_ENGINE_SIMD') |
| assert core.IsOperator('SparseFtrl_ENGINE_SIMD') |
| ftrl_optimizer = FtrlOptimizer(engine=engine, **kwargs) |
| for param, grad in model.GetOptimizationPairs().items(): |
| ftrl_optimizer(model.net, model.param_init_net, param, grad) |
| return ftrl_optimizer |
| |
| |
| def build_adagrad(model, base_learning_rate, parameters=None, **kwargs): |
| adagrad_optimizer = AdagradOptimizer(alpha=base_learning_rate, **kwargs) |
| param_to_grad = model.GetOptimizationPairs(parameters) |
| |
| for param, grad in param_to_grad.items(): |
| adagrad_optimizer(model.net, model.param_init_net, param, grad) |
| return adagrad_optimizer |
| |
| |
| def build_adam(model, base_learning_rate, **kwargs): |
| adam_optimizer = AdamOptimizer(alpha=base_learning_rate, **kwargs) |
| for param, grad in model.GetOptimizationPairs().items(): |
| adam_optimizer(model.net, model.param_init_net, param, grad) |
| return adam_optimizer |