| #include <ATen/ATen.h> |
| #include <ATen/cuda/CUDAConfig.h> |
| #if AT_CUDNN_ENABLED() |
| |
| #include <ATen/native/cudnn/Macros.h> |
| |
| #endif |
| #include <ATen/cuda/CUDAContext.h> |
| #include <ATen/cuda/CUDAGeneratorImpl.h> |
| #include <ATen/cuda/CachingHostAllocator.h> |
| #include <ATen/cuda/Sleep.h> |
| #include <ATen/cuda/detail/CUDAHooks.h> |
| #include <ATen/cuda/jiterator.h> |
| #include <c10/cuda/CUDACachingAllocator.h> |
| #include <c10/cuda/CUDAFunctions.h> |
| #include <ATen/cuda/CUDAGraphsUtils.cuh> |
| #ifdef USE_NCCL |
| #include <torch/csrc/cuda/python_nccl.h> |
| #endif |
| #include <c10/util/CallOnce.h> |
| #include <c10/util/irange.h> |
| |
| #include <torch/csrc/CudaIPCTypes.h> |
| #include <torch/csrc/Generator.h> |
| #include <torch/csrc/cuda/THCP.h> |
| #include <torch/csrc/cuda/python_comm.h> |
| #include <torch/csrc/python_headers.h> |
| #include <torch/csrc/utils/cuda_lazy_init.h> |
| #include <torch/csrc/utils/pybind.h> |
| #include <torch/csrc/utils/python_numbers.h> |
| #include <torch/csrc/utils/python_strings.h> |
| |
| #include <array> |
| #include <chrono> |
| #include <sstream> |
| #include <thread> |
| #include <unordered_map> |
| |
| #ifndef WIN32 |
| #include <pthread.h> |
| #endif |
| |
| using namespace torch; |
| |
| static bool in_bad_fork = false; // True for children forked after cuda init |
| |
| #ifndef WIN32 |
| // Called in the forked child if cuda has already been initialized |
| static void forked_child() { |
| in_bad_fork = true; |
| torch::utils::set_requires_cuda_init(true); |
| } |
| #endif |
| |
| // Should be called before the first cuda call. |
| // Note: This is distinct from initExtension because a stub cuda implementation |
| // has some working functions (e.g. device_count) but cannot fully initialize. |
| static void poison_fork() { |
| #ifndef WIN32 |
| static c10::once_flag flag; |
| c10::call_once(flag, [] { pthread_atfork(nullptr, nullptr, forked_child); }); |
| #endif |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // CUDA management methods |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void THCPModule_setDevice(int device) { |
| c10::cuda::set_device(static_cast<c10::DeviceIndex>(device)); |
| } |
| |
| PyObject* THCPModule_setDevice_wrap(PyObject* self, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice"); |
| int64_t device = THPUtils_unpackLong(arg); |
| |
| torch::utils::cuda_lazy_init(); |
| THCPModule_setDevice(device); |
| |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getDevice_wrap(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| torch::utils::cuda_lazy_init(); |
| // NOLINTNEXTLINE(bugprone-signed-char-misuse) |
| auto device = static_cast<int>(c10::cuda::current_device()); |
| return THPUtils_packInt32(device); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_canDeviceAccessPeer_wrap(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject* arg1 = nullptr; |
| PyObject* arg2 = nullptr; |
| if (!PyArg_ParseTuple(args, "OO", &arg1, &arg2)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "can_device_peer_access", |
| 1, |
| "(int device, int peer_device);"); |
| return nullptr; |
| } |
| THPUtils_assert( |
| THPUtils_checkLong(arg1), "invalid argument to canDeviceAccessPeer"); |
| THPUtils_assert( |
| THPUtils_checkLong(arg2), "invalid argument to canDeviceAccessPeer"); |
| int64_t device = THPUtils_unpackLong(arg1); |
| int64_t peer_device = THPUtils_unpackLong(arg2); |
| |
| torch::utils::cuda_lazy_init(); |
| auto can_access = at::cuda::canDeviceAccessPeer(device, peer_device); |
| return PyBool_FromLong(can_access); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getDeviceCount_wrap(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| poison_fork(); |
| return THPUtils_packUInt64(at::cuda::device_count()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getArchFlags(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| poison_fork(); |
| #ifdef CUDA_ARCH_FLAGS |
| static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS); |
| return THPUtils_packString(flags); |
| #else |
| Py_RETURN_NONE; |
| #endif |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject* THCPModule_isInBadFork(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| return PyBool_FromLong(in_bad_fork); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getCurrentStream_wrap( |
| PyObject* /* unused */, |
| PyObject* device_index) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(device_index), "invalid argument to getCurrentStream"); |
| int64_t device = THPUtils_unpackLong(device_index); |
| return PyLong_FromUnsignedLongLong( |
| at::cuda::getCurrentCUDAStream(device).pack()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getCurrentStream_raw( |
| PyObject* /* unused */, |
| PyObject* device_index) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(device_index), "invalid argument to getCurrentStream"); |
| int64_t device = THPUtils_unpackLong(device_index); |
| return PyLong_FromVoidPtr(at::cuda::getCurrentCUDAStream(device).stream()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getDefaultStream_wrap( |
| PyObject* /* unused */, |
| PyObject* device_index) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(device_index), "invalid argument to getDefaultStream"); |
| int64_t device = THPUtils_unpackLong(device_index); |
| return PyLong_FromUnsignedLongLong( |
| at::cuda::getDefaultCUDAStream(device).pack()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_setStream_wrap(PyObject* self, PyObject* obj) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert(PyLong_Check(obj), "invalid stream"); |
| uint64_t bits = PyLong_AsUnsignedLongLong(obj); |
| if (bits == static_cast<uint64_t>(-1) && PyErr_Occurred()) { |
| throw python_error(); |
| } |
| auto stream = at::cuda::CUDAStream::unpack(bits); |
| // NOLINTNEXTLINE(bugprone-signed-char-misuse) |
| auto device = static_cast<int>(c10::cuda::current_device()); |
| if (device != stream.device_index()) { |
| THCPModule_setDevice(stream.device_index()); |
| } |
| at::cuda::setCurrentCUDAStream(stream); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getCompiledVersion(PyObject* self, PyObject* noargs) { |
| #if defined(USE_ROCM) |
| return THPUtils_packInt64((int64_t)ROCM_VERSION); |
| #else |
| return THPUtils_packInt64((int64_t)CUDA_VERSION); |
| #endif |
| } |
| |
| PyObject* THCPModule_cudaHostAllocator(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| c10::Allocator* allocator = at::cuda::getCachingHostAllocator(); |
| return PyLong_FromVoidPtr(allocator); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaCachingAllocator_raw_alloc( |
| PyObject* _unused, |
| PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject* size_o = nullptr; |
| PyObject* stream_o = nullptr; |
| if (!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "caching_allocator_alloc", |
| 1, |
| "(ssize_t size, intptr_t stream);"); |
| return nullptr; |
| } |
| auto size = PyLong_AsSsize_t(size_o); |
| // NOLINTNEXTLINE(cppcoreguidelines-init-variables) |
| cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o)); |
| // NOLINTNEXTLINE(cppcoreguidelines-init-variables) |
| void* mem = |
| c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream); |
| return PyLong_FromVoidPtr(mem); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // Unpack a PyObject to at::Scalar, throw an exception if it fails |
| at::Scalar as_scalar(PyObject* arg) { |
| // Zero-dim tensors are converted to Scalars as-is. Note this doesn't |
| // currently handle most NumPy scalar types except np.float64. |
| if (THPVariable_Check(arg)) { |
| return THPVariable_Unpack(arg).item(); |
| } |
| |
| if (THPUtils_checkLong(arg)) { |
| return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(arg))); |
| } |
| |
| if (PyBool_Check(arg)) { |
| return at::Scalar(THPUtils_unpackBool(arg)); |
| } |
| |
| if (PyComplex_Check(arg)) { |
| return at::Scalar(THPUtils_unpackComplexDouble(arg)); |
| } |
| return at::Scalar(THPUtils_unpackDouble(arg)); |
| } |
| |
| // Entrypoint for the callable created by torch.cuda.jiterator |
| // See jiterator.py for more details |
| PyObject* THCPModule_cudaJiteratorCompileAndLaunchKernel( |
| PyObject* _unused, |
| PyObject* args) { |
| HANDLE_TH_ERRORS |
| |
| PyObject* code_string_o = nullptr; |
| PyObject* kernel_name_o = nullptr; |
| PyObject* return_by_ref_o = nullptr; |
| PyObject* num_outputs_o = nullptr; |
| PyObject* tensors_o = nullptr; |
| PyObject* kwargs_o = nullptr; |
| if (!PyArg_ParseTuple( |
| args, |
| "OOOOO|O", |
| &code_string_o, |
| &kernel_name_o, |
| &return_by_ref_o, |
| &num_outputs_o, |
| &tensors_o, |
| &kwargs_o)) { |
| return nullptr; |
| } |
| |
| const std::string code_string = THPUtils_unpackString(code_string_o); |
| const std::string kernel_name = THPUtils_unpackString(kernel_name_o); |
| const bool return_by_ref = THPUtils_unpackBool(return_by_ref_o); |
| const int num_outputs = static_cast<int>(THPUtils_unpackLong(num_outputs_o)); |
| |
| THPUtils_assert( |
| PyTuple_Check(tensors_o), |
| "tensors argument is expected to " |
| "be a tuple, but got %s", |
| THPUtils_typename(tensors_o)); |
| Py_ssize_t num_tensors = PyTuple_GET_SIZE(tensors_o); |
| |
| c10::SmallVector<at::Tensor> tensors; |
| for (const auto i : c10::irange(num_tensors)) { |
| PyObject* _tensor = PyTuple_GET_ITEM(tensors_o, i); |
| THPUtils_assert( |
| THPVariable_Check(_tensor), |
| "%d of input tensors tuple is not a Tensor", |
| i); |
| |
| tensors.emplace_back(THPVariable_Unpack(_tensor)); |
| } |
| |
| c10::SmallVector<at::Scalar> extra_args; |
| PyObject* key = nullptr; |
| PyObject* value = nullptr; |
| Py_ssize_t pos = 0; |
| while (PyDict_Next(kwargs_o, &pos, &key, &value)) { |
| extra_args.emplace_back(as_scalar(value)); |
| } |
| |
| c10::SmallVector<at::Tensor> outputs = at::cuda::CompileAndLaunchKernel( |
| code_string, |
| kernel_name, |
| num_outputs, |
| tensors, |
| extra_args, |
| return_by_ref); |
| |
| if (num_outputs == 1) { |
| return THPVariable_Wrap(outputs[0]); |
| } else { |
| PyObject* output_tuple = PyTuple_New(num_outputs); |
| for (int i = 0; i < num_outputs; ++i) { |
| PyTuple_SetItem(output_tuple, i, THPVariable_Wrap(outputs[i])); |
| } |
| return output_tuple; |
| } |
| |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaCachingAllocator_raw_delete( |
| PyObject* _unused, |
| PyObject* obj) { |
| HANDLE_TH_ERRORS |
| void* mem_ptr = PyLong_AsVoidPtr(obj); |
| c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaSynchronize(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| c10::cuda::device_synchronize(); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaIPCCollect(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| torch::CudaIPCCollect(); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaSleep(PyObject* _unused, PyObject* cycles) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'"); |
| at::cuda::sleep(THPUtils_unpackLong(cycles)); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // We need to ensure that as long as a thread will NEVER loose the GIL as long |
| // as it holds the CUDA mutex. Otherwise another thread might be scheduled and |
| // try to e.g. allocate a new tensor which will cause a deadlock. It's enough to |
| // have a single global, because it can be only set once (cudaMutex is not |
| // recursive) by the thread that owns the mutex (obviously there can be only one |
| // such thread). |
| static PyGILState_STATE cudaMutexGILState; |
| |
| PyObject* THCPModule_cudaLockMutex(PyObject* module, PyObject* noargs) { |
| auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex(); |
| // This has to be a busy loop because we **absolutely need to** hold the GIL |
| // or it's a recipe for a deadlock otherwise (if we let other Python threads |
| // run while we have the cudaMutex, but not the GIL, they might try to e.g. |
| // free a CUDA tensor and acquire the cudaMutex without giving up the GIL, |
| // because it happens deep within THC). |
| while (true) { |
| if (mutex->try_lock()) |
| break; |
| { |
| pybind11::gil_scoped_release no_gil; |
| std::this_thread::sleep_for(std::chrono::microseconds(10)); |
| } |
| } |
| |
| cudaMutexGILState = PyGILState_Ensure(); |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_cudaUnlockMutex(PyObject* module, PyObject* noargs) { |
| auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex(); |
| PyGILState_Release(cudaMutexGILState); |
| mutex->unlock(); |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_hasPrimaryContext(PyObject* _unused, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(arg), "invalid argument to has_primary_context"); |
| int64_t device_index = static_cast<int64_t>(THPUtils_unpackLong(arg)); |
| if (at::cuda::detail::hasPrimaryContext(device_index)) { |
| Py_RETURN_TRUE; |
| } else { |
| Py_RETURN_FALSE; |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_setMemoryFraction(PyObject* _unused, PyObject* args) { |
| HANDLE_TH_ERRORS |
| PyObject* fraction_o = nullptr; |
| PyObject* device_o = nullptr; |
| if (!PyArg_ParseTuple(args, "OO", &fraction_o, &device_o)) { |
| THPUtils_invalidArguments( |
| args, |
| nullptr, |
| "set_memory_fraction", |
| 1, |
| "(double fraction, int device);"); |
| return nullptr; |
| } |
| double fraction = PyFloat_AsDouble(fraction_o); |
| int64_t device = PyLong_AsLongLong(device_o); |
| |
| c10::cuda::CUDACachingAllocator::setMemoryFraction(fraction, device); |
| END_HANDLE_TH_ERRORS |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_emptyCache(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| c10::cuda::CUDACachingAllocator::emptyCache(); |
| END_HANDLE_TH_ERRORS |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_memoryStats(PyObject* _unused, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(arg), "invalid argument to memory_allocated"); |
| const int device = (int)THPUtils_unpackLong(arg); |
| |
| using c10::cuda::CUDACachingAllocator::DeviceStats; |
| using c10::cuda::CUDACachingAllocator::Stat; |
| using c10::cuda::CUDACachingAllocator::StatArray; |
| using c10::cuda::CUDACachingAllocator::StatType; |
| |
| const auto statToDict = [](const Stat& stat) { |
| py::dict dict; |
| |
| dict["current"] = stat.current; |
| dict["peak"] = stat.peak; |
| dict["allocated"] = stat.allocated; |
| dict["freed"] = stat.freed; |
| return dict; |
| }; |
| |
| const auto statArrayToDict = [=](const StatArray& statArray) { |
| const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)> |
| statTypeNames = {"all", "small_pool", "large_pool"}; |
| py::dict dict; |
| for (const auto i : c10::irange(statTypeNames.size())) { |
| dict[statTypeNames[i]] = statToDict(statArray[i]); |
| } |
| return dict; |
| }; |
| |
| const DeviceStats stats = |
| c10::cuda::CUDACachingAllocator::getDeviceStats(device); |
| |
| py::dict result; |
| result["num_alloc_retries"] = stats.num_alloc_retries; |
| result["num_ooms"] = stats.num_ooms; |
| result["max_split_size"] = stats.max_split_size; |
| result["allocation"] = statArrayToDict(stats.allocation); |
| result["segment"] = statArrayToDict(stats.segment); |
| result["active"] = statArrayToDict(stats.active); |
| result["inactive_split"] = statArrayToDict(stats.inactive_split); |
| result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes); |
| result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes); |
| result["active_bytes"] = statArrayToDict(stats.active_bytes); |
| result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes); |
| result["oversize_allocations"] = statToDict(stats.oversize_allocations); |
| result["oversize_segments"] = statToDict(stats.oversize_segments); |
| |
| return result.release().ptr(); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_resetAccumulatedMemoryStats( |
| PyObject* _unused, |
| PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(arg), |
| "invalid argument to reset_accumulated_memory_stats"); |
| const int device = (int)THPUtils_unpackLong(arg); |
| c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device); |
| END_HANDLE_TH_ERRORS |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_resetPeakMemoryStats(PyObject* _unused, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats"); |
| const int device = (int)THPUtils_unpackLong(arg); |
| c10::cuda::CUDACachingAllocator::resetPeakStats(device); |
| END_HANDLE_TH_ERRORS |
| Py_RETURN_NONE; |
| } |
| |
| struct Frame { |
| PyCodeObject* code; |
| int lasti; |
| }; |
| |
| struct StackContext : public c10::cuda::CUDACachingAllocator::Context { |
| std::vector<Frame> frames; |
| ~StackContext() { |
| for (auto& f : frames) { |
| Py_XDECREF((PyObject*)f.code); |
| } |
| } |
| static std::unique_ptr<c10::cuda::CUDACachingAllocator::Context> gather() { |
| py::gil_scoped_acquire acquire; |
| auto r = std::make_unique<StackContext>(); |
| PyFrameObject* f = PyEval_GetFrame(); |
| Py_XINCREF(f); |
| while (f) { |
| r->frames.emplace_back(Frame{PyFrame_GetCode(f), PyFrame_GetLasti(f)}); |
| auto f_back = PyFrame_GetBack(f); |
| Py_XDECREF(f); |
| f = f_back; |
| } |
| return r; |
| } |
| }; |
| |
| PyObject* THCPModule_memorySnapshot(PyObject* _unused, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| |
| using c10::cuda::CUDACachingAllocator::BlockInfo; |
| using c10::cuda::CUDACachingAllocator::History; |
| using c10::cuda::CUDACachingAllocator::SegmentInfo; |
| |
| py::str device_s = "device"; |
| py::str address_s = "address"; |
| py::str total_size_s = "total_size"; |
| py::str allocated_size_s = "allocated_size"; |
| py::str active_size_s = "active_size"; |
| py::str stream_s = "stream"; |
| py::str segment_type_s = "segment_type"; |
| py::str large_s = "large"; |
| py::str small_s = "small"; |
| py::str size_s = "size"; |
| py::str state_s = "state"; |
| py::str active_allocated_s = "active_allocated"; |
| py::str active_pending_free_s = "active_pending_free"; |
| py::str inactive_s = "inactive"; |
| py::str addr_s = "addr"; |
| py::str real_size_s = "real_size"; |
| py::str filename_s = "filename"; |
| py::str name_s = "name"; |
| py::str line_s = "line"; |
| py::str frames_s = "frames"; |
| py::str history_s = "history"; |
| py::str blocks_s = "blocks"; |
| |
| const auto segmentInfoToDict = [&](const SegmentInfo& segmentInfo) { |
| py::dict segmentDict; |
| segmentDict[device_s] = segmentInfo.device; |
| segmentDict[address_s] = segmentInfo.address; |
| segmentDict[total_size_s] = segmentInfo.total_size; |
| segmentDict[allocated_size_s] = segmentInfo.allocated_size; |
| segmentDict[active_size_s] = segmentInfo.active_size; |
| // we want the python objects to pickle easily so use an int to |
| // represent the stream rather than a torch.cuda.stream object |
| segmentDict[stream_s] = int64_t(segmentInfo.stream); |
| segmentDict[segment_type_s] = (segmentInfo.is_large ? large_s : small_s); |
| |
| py::list blocks; |
| for (const auto& blockInfo : segmentInfo.blocks) { |
| py::dict blockDict; |
| blockDict[size_s] = blockInfo.size; |
| blockDict[state_s] = |
| (blockInfo.allocated |
| ? active_allocated_s |
| : (blockInfo.active ? active_pending_free_s : inactive_s)); |
| if (blockInfo.history) { |
| py::list history; |
| History* h = blockInfo.history; |
| while (h) { |
| py::dict history_entry; |
| history_entry[addr_s] = (int64_t)h->addr; |
| history_entry[real_size_s] = h->real_size; |
| if (h->context) { |
| py::list frames; |
| auto sc = (StackContext*)h->context.get(); |
| for (auto& f : sc->frames) { |
| py::dict frame; |
| frame[filename_s] = |
| py::reinterpret_borrow<py::object>(f.code->co_filename); |
| frame[name_s] = |
| py::reinterpret_borrow<py::object>(f.code->co_name); |
| frame[line_s] = PyCode_Addr2Line(f.code, f.lasti); |
| frames.append(std::move(frame)); |
| } |
| history_entry[frames_s] = std::move(frames); |
| } |
| h = h->next.get(); |
| history.append(std::move(history_entry)); |
| } |
| blockDict[history_s] = std::move(history); |
| } |
| blocks.append(blockDict); |
| } |
| segmentDict[blocks_s] = blocks; |
| |
| return segmentDict; |
| }; |
| |
| const std::vector<SegmentInfo>& snapshot = |
| c10::cuda::CUDACachingAllocator::snapshot(); |
| py::list result; |
| |
| for (const auto& segmentInfo : snapshot) { |
| result.append(segmentInfoToDict(segmentInfo)); |
| } |
| |
| return result.release().ptr(); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_recordMemoryHistory(PyObject* _unused, PyObject* enabled) { |
| HANDLE_TH_ERRORS |
| THPUtils_assert( |
| PyBool_Check(enabled), |
| "recordMemoryHistory expects a bool, " |
| "but got %s", |
| THPUtils_typename(enabled)); |
| c10::cuda::CUDACachingAllocator::setContextRecorder( |
| enabled == Py_True ? StackContext::gather : nullptr); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaSetSyncDebugMode(PyObject* _unused, PyObject* arg) { |
| HANDLE_TH_ERRORS |
| TORCH_WARN_ONCE( |
| "Synchronization debug mode is a prototype feature and does not yet detect all " |
| "synchronizing operations"); |
| THPUtils_assert( |
| THPUtils_checkLong(arg), "invalid argument to set_sync_debug_mode"); |
| int64_t debug_mode = THPUtils_unpackLong(arg); |
| TORCH_CHECK( |
| debug_mode >= 0 && debug_mode <= 2, |
| "invalid value of debug_mode, expected one of 0,1,2"); |
| c10::cuda::SyncDebugMode l; |
| switch (debug_mode) { |
| case 0: |
| l = c10::cuda::SyncDebugMode::L_DISABLED; |
| break; |
| case 1: |
| l = c10::cuda::SyncDebugMode::L_WARN; |
| break; |
| case 2: |
| l = c10::cuda::SyncDebugMode::L_ERROR; |
| break; |
| default: |
| l = c10::cuda::SyncDebugMode::L_DISABLED; |
| break; // can't happen |
| } |
| c10::cuda::warning_state().set_sync_debug_mode(l); |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_cudaGetSyncDebugMode(PyObject* self, PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| auto debug_mode = c10::cuda::warning_state().get_sync_debug_mode(); |
| switch (debug_mode) { |
| case c10::cuda::SyncDebugMode::L_DISABLED: |
| return THPUtils_packInt32(0); |
| case c10::cuda::SyncDebugMode::L_WARN: |
| return THPUtils_packInt32(1); |
| case c10::cuda::SyncDebugMode::L_ERROR: |
| return THPUtils_packInt32(2); |
| default: |
| return THPUtils_packInt32(-1); // can't happen |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Cuda module initialization |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static void registerCudaDeviceProperties(PyObject* module) { |
| // Add _cudaDevicePropertires class to torch._C |
| auto m = py::handle(module).cast<py::module>(); |
| py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties") |
| .def_readonly("name", &cudaDeviceProp::name) |
| .def_readonly("major", &cudaDeviceProp::major) |
| .def_readonly("minor", &cudaDeviceProp::minor) |
| .def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard) |
| .def_readonly("is_integrated", &cudaDeviceProp::integrated) |
| .def_readonly( |
| "multi_processor_count", &cudaDeviceProp::multiProcessorCount) |
| .def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem) |
| .def("__repr__", [](const cudaDeviceProp& prop) { |
| std::ostringstream stream; |
| stream << "_CudaDeviceProperties(name='" << prop.name |
| << "', major=" << prop.major << ", minor=" << prop.minor |
| << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024) |
| << "MB, multi_processor_count=" << prop.multiProcessorCount |
| << ")"; |
| return stream.str(); |
| }); |
| } |
| |
| static void bindGetDeviceProperties(PyObject* module) { |
| // Add method to torch.cuda |
| auto m = py::handle(module).cast<py::module>(); |
| m.def( |
| "_get_device_properties", |
| [](int device) -> cudaDeviceProp* { |
| return at::cuda::getDeviceProperties(device); |
| }, |
| py::return_value_policy::reference); |
| } |
| |
| // Callback for python part. Used for additional initialization of python |
| // classes |
| static PyObject* THCPModule_initExtension(PyObject* self, PyObject* noargs) { |
| #if C10_ASAN_ENABLED |
| TORCH_WARN( |
| "torch.cuda: your pytorch binary has address sanitizer (asan) built in, " |
| "asan is currently not compatible with torch.cuda module, " |
| "you might get unexpected behavior (eg. out of memory, crash, etc.), " |
| "please rebuild pytorch without asan if you need to use this module"); |
| #endif |
| HANDLE_TH_ERRORS |
| TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level |
| poison_fork(); |
| at::globalContext().lazyInitCUDA(); |
| |
| auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda")); |
| if (!m) |
| throw python_error(); |
| |
| bool has_half = true; |
| |
| auto set_module_attr = [&](const char* name, PyObject* v) { |
| // PyObject_SetAttrString doesn't steal reference. So no need to incref. |
| if (PyObject_SetAttrString(m, name, v) < 0) { |
| throw python_error(); |
| } |
| }; |
| |
| set_module_attr("has_magma", at::hasMAGMA() ? Py_True : Py_False); |
| set_module_attr("has_half", has_half ? Py_True : Py_False); |
| |
| auto num_gpus = c10::cuda::device_count(); |
| auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus)); |
| for (const auto i : c10::irange(num_gpus)) { |
| // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) |
| auto gen = at::cuda::detail::getDefaultCUDAGenerator(i); |
| auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator(gen); |
| // This reference is meant to be given away, so no need to incref here. |
| PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen); |
| } |
| set_module_attr("default_generators", default_cuda_generators); |
| bindGetDeviceProperties(m); |
| |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_getCurrentBlasHandle_wrap( |
| PyObject* self, |
| PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| // NOLINTNEXTLINE(cppcoreguidelines-init-variables) |
| cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle(); |
| return PyLong_FromVoidPtr(handle); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_rocm_is_backward_pass( |
| PyObject* _unused, |
| PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| #if USE_ROCM |
| if (at::ROCmBackwardPassGuard::is_backward_pass()) { |
| Py_RETURN_TRUE; |
| } else { |
| Py_RETURN_FALSE; |
| } |
| #else |
| Py_RETURN_FALSE; |
| #endif |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject* THCPModule_isCurrentStreamCapturing_wrap( |
| PyObject* self, |
| PyObject* noargs) { |
| HANDLE_TH_ERRORS |
| // If there's no cuda context, at::cuda::currentStreamCaptureStatus returns |
| // CaptureStatus::None without initializing a context. |
| if (at::cuda::currentStreamCaptureStatus() == at::cuda::CaptureStatus::None) { |
| Py_RETURN_FALSE; |
| } else { |
| Py_RETURN_TRUE; |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| PyObject* THCPModule_setBenchmarkLimitCuDNN(PyObject* _unused, PyObject* arg) { |
| THPUtils_assert( |
| THPUtils_checkLong(arg), |
| "set_benchmark_limit_cudnn expects an int, " |
| "but got %s", |
| THPUtils_typename(arg)); |
| auto benchmark_limit = static_cast<int>(THPUtils_unpackLong(arg)); |
| #if defined(USE_ROCM) |
| TORCH_WARN_ONCE( |
| "cuDNN Benchmark limit is not supported in MIOpen and will have no effect."); |
| #endif |
| #if AT_CUDNN_ENABLED() |
| #if HAS_CUDNN_V8() |
| at::globalContext().setBenchmarkLimitCuDNN(benchmark_limit); |
| #else |
| TORCH_WARN_ONCE( |
| "cuDNN Benchmark limit is not supported with cuDNN v7 API and will have no effect."); |
| #endif |
| #endif |
| Py_RETURN_NONE; |
| } |
| |
| PyObject* THCPModule_benchmarkLimitCuDNN(PyObject* _unused, PyObject* noargs) { |
| return THPUtils_packInt32(at::globalContext().benchmarkLimitCuDNN()); |
| } |
| |
| // NOLINTNEXTLINE(modernize-avoid-c-arrays, |
| // cppcoreguidelines-avoid-non-const-global-variables, |
| // cppcoreguidelines-avoid-c-arrays) |
| static struct PyMethodDef _THCPModule_methods[] = { |
| {"_cuda_init", THCPModule_initExtension, METH_NOARGS, nullptr}, |
| {"_cuda_setDevice", THCPModule_setDevice_wrap, METH_O, nullptr}, |
| {"_cuda_getDevice", THCPModule_getDevice_wrap, METH_NOARGS, nullptr}, |
| {"_cuda_getDeviceCount", |
| THCPModule_getDeviceCount_wrap, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_canDeviceAccessPeer", |
| THCPModule_canDeviceAccessPeer_wrap, |
| METH_VARARGS, |
| nullptr}, |
| {"_cuda_getArchFlags", THCPModule_getArchFlags, METH_NOARGS, nullptr}, |
| {"_cuda_isInBadFork", THCPModule_isInBadFork, METH_NOARGS, nullptr}, |
| {"_cuda_getCurrentStream", |
| THCPModule_getCurrentStream_wrap, |
| METH_O, |
| nullptr}, |
| {"_cuda_getCurrentRawStream", |
| THCPModule_getCurrentStream_raw, |
| METH_O, |
| nullptr}, |
| {"_cuda_getDefaultStream", |
| THCPModule_getDefaultStream_wrap, |
| METH_O, |
| nullptr}, |
| {"_cuda_getCurrentBlasHandle", |
| THCPModule_getCurrentBlasHandle_wrap, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_isCurrentStreamCapturing", |
| THCPModule_isCurrentStreamCapturing_wrap, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_setStream", THCPModule_setStream_wrap, METH_O, nullptr}, |
| {"_cuda_getCompiledVersion", |
| THCPModule_getCompiledVersion, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_hasPrimaryContext", THCPModule_hasPrimaryContext, METH_O, nullptr}, |
| {"_cuda_setMemoryFraction", |
| THCPModule_setMemoryFraction, |
| METH_VARARGS, |
| nullptr}, |
| {"_cuda_emptyCache", THCPModule_emptyCache, METH_NOARGS, nullptr}, |
| {"_cuda_memoryStats", THCPModule_memoryStats, METH_O, nullptr}, |
| {"_cuda_resetAccumulatedMemoryStats", |
| THCPModule_resetAccumulatedMemoryStats, |
| METH_O, |
| nullptr}, |
| {"_cuda_resetPeakMemoryStats", |
| THCPModule_resetPeakMemoryStats, |
| METH_O, |
| nullptr}, |
| {"_cuda_memorySnapshot", THCPModule_memorySnapshot, METH_NOARGS, nullptr}, |
| {"_cuda_recordMemoryHistory", |
| THCPModule_recordMemoryHistory, |
| METH_O, |
| nullptr}, |
| |
| {"_cuda_cudaHostAllocator", |
| THCPModule_cudaHostAllocator, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_cudaCachingAllocator_raw_alloc", |
| THCPModule_cudaCachingAllocator_raw_alloc, |
| METH_VARARGS, |
| nullptr}, |
| {"_cuda_cudaCachingAllocator_raw_delete", |
| THCPModule_cudaCachingAllocator_raw_delete, |
| METH_O, |
| nullptr}, |
| {"_cuda_synchronize", THCPModule_cudaSynchronize, METH_NOARGS, nullptr}, |
| {"_cuda_ipc_collect", THCPModule_cudaIPCCollect, METH_NOARGS, nullptr}, |
| {"_cuda_sleep", THCPModule_cudaSleep, METH_O, nullptr}, |
| {"_cuda_lock_mutex", THCPModule_cudaLockMutex, METH_NOARGS, nullptr}, |
| {"_cuda_unlock_mutex", THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr}, |
| {"_cuda_set_sync_debug_mode", |
| THCPModule_cudaSetSyncDebugMode, |
| METH_O, |
| nullptr}, |
| {"_cuda_get_sync_debug_mode", |
| THCPModule_cudaGetSyncDebugMode, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_jiterator_compile_and_launch_kernel", |
| THCPModule_cudaJiteratorCompileAndLaunchKernel, |
| METH_VARARGS, |
| nullptr}, |
| {"_cuda_get_cudnn_benchmark_limit", |
| THCPModule_benchmarkLimitCuDNN, |
| METH_NOARGS, |
| nullptr}, |
| {"_cuda_set_cudnn_benchmark_limit", |
| THCPModule_setBenchmarkLimitCuDNN, |
| METH_O, |
| nullptr}, |
| #ifdef USE_NCCL |
| {"_nccl_version", THCPModule_nccl_version, METH_NOARGS, nullptr}, |
| {"_nccl_unique_id", THCPModule_nccl_unique_id, METH_NOARGS, nullptr}, |
| {"_nccl_init_rank", THCPModule_nccl_init_rank, METH_VARARGS, nullptr}, |
| {"_nccl_reduce", THCPModule_nccl_reduce, METH_VARARGS, nullptr}, |
| {"_nccl_all_reduce", THCPModule_nccl_all_reduce, METH_VARARGS, nullptr}, |
| {"_nccl_broadcast", THCPModule_nccl_broadcast, METH_VARARGS, nullptr}, |
| {"_nccl_all_gather", THCPModule_nccl_all_gather, METH_VARARGS, nullptr}, |
| {"_nccl_reduce_scatter", |
| THCPModule_nccl_reduce_scatter, |
| METH_VARARGS, |
| nullptr}, |
| #endif |
| {"_rocm_is_backward_pass", |
| THCPModule_rocm_is_backward_pass, |
| METH_NOARGS, |
| nullptr}, |
| {nullptr}}; |
| |
| PyMethodDef* THCPModule_methods() { |
| return _THCPModule_methods; |
| } |
| |
| namespace torch { |
| namespace cuda { |
| |
| namespace shared { |
| |
| void initCudartBindings(PyObject* module); |
| void initNvtxBindings(PyObject* module); |
| #if defined(USE_CUDNN) || defined(USE_ROCM) |
| void initCudnnBindings(PyObject* module); |
| #endif |
| |
| } // namespace shared |
| |
| void initModule(PyObject* module) { |
| python::initCommMethods(module); |
| // As weird as it seems, this file is also compiled for ROCm, |
| // so this condition might not always be true... |
| shared::initCudartBindings(module); |
| shared::initNvtxBindings(module); |
| #if defined(USE_CUDNN) || defined(USE_ROCM) |
| shared::initCudnnBindings(module); |
| #endif |
| registerCudaDeviceProperties(module); |
| } |
| |
| } // namespace cuda |
| } // namespace torch |