blob: e112cd14acbe729846db919c5827f9d2031cb983 [file] [log] [blame]
import os
import sys
import tempfile
import random
from textwrap import dedent
import torch
from torch.testing._internal.jit_utils import JitTestCase, execWrapper
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
def get_fn(file_name, script_path):
import importlib.util
spec = importlib.util.spec_from_file_location(file_name, script_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
fn = module.fn
return fn
class TestPythonBuiltinOP(JitTestCase):
def test_add(self):
def func(a, b):
c = a + b
c += a
return c
a = torch.rand(1, requires_grad=True)
b = torch.rand(1, requires_grad=True)
self.checkScript(func, (a, b), optimize=True)
def test_mul(self):
def func(a, b):
return a * b
a = torch.rand(1, requires_grad=True)
b = torch.rand(1, requires_grad=True)
self.checkScript(func, (a, b), optimize=True)
def test_matmul_py3(self):
code = dedent("""
def fn(a, b):
return a @ b
""")
with tempfile.TemporaryDirectory() as tmp_dir:
script_path = os.path.join(tmp_dir, 'script.py')
with open(script_path, 'w') as f:
f.write(code)
fn = get_fn('test_matmul_py3', script_path)
a = torch.rand(4, 3, requires_grad=True)
b = torch.rand(3, 2, requires_grad=True)
self.checkScript(fn, (a, b), optimize=True)
def test_pow(self):
def func(a, b):
return a ** b
def func2(a, b, c, d):
return c + a ** b ** d
def func3(a, b):
# type: (int, float) -> float
return a ** b
def func4():
# type: () -> float
return 2 ** -2
def func5(x, y):
return x.item() ** y.item()
a = torch.rand(1, requires_grad=True)
b = torch.rand(1, requires_grad=True)
c = torch.rand(1, requires_grad=True)
d = torch.rand(1, requires_grad=True)
self.checkScript(func, (a, b), optimize=True)
self.checkScript(func2, (a, b, c, d), optimize=True)
self.checkScript(func3, (4, -0.5), optimize=True)
self.checkScript(func4, ())
inputs = [torch.tensor(2), torch.tensor(-2), torch.tensor(.5), torch.tensor(.2)]
for x in inputs:
for y in inputs:
if x < 0:
continue
else:
self.checkScript(func5, (x, y))
def test_triple(self):
def func(x):
return 3. * x
x = torch.rand(1, dtype=torch.float, requires_grad=True)
self.checkScript(func, [x], optimize=True)
def test_slice(self):
def func(x):
return x[:5]
x = torch.rand(10, dtype=torch.float, requires_grad=True)
self.checkScript(func, [x], optimize=True)
def func2(x):
return x[5:]
self.checkScript(func2, [x], optimize=True)
def func3(x):
return x[:8:2]
self.checkScript(func3, [x], optimize=True)
def func4(x):
return x[1::4]
self.checkScript(func4, [x], optimize=True)
def test_gather(self):
def func(x):
return x[0]
x = torch.rand(10, dtype=torch.float, requires_grad=True)
self.checkScript(func, [x], optimize=True)
def test_random(self):
@torch.jit.script
def f(mean, std):
return torch.normal(mean, std)
mean, std = torch.zeros(5, 5), torch.ones(5, 5)
with torch.random.fork_rng(devices=[]):
output = torch.normal(mean, std)
with torch.random.fork_rng(devices=[]):
script_output = f(mean, std)
self.assertEqual(output, script_output)
def _check_code(self, code_str, fn_name, inputs):
scope = {}
exec(code_str, globals(), scope)
cu = torch.jit.CompilationUnit(code_str)
self.assertEqual(cu.func(*inputs), scope[fn_name](*inputs))
def test_stepped_tuple_slicing(self):
def check_slicing_tuple(slicing, tuple_type, tuple):
template = dedent("""
def func(x):
# type: ({}) -> Any
return x{}
""")
self._check_code(template.format(tuple_type, slicing), "func", [tuple])
check_slicing_tuple("[-3:3:2]", "Tuple[int, int, int]", (0, 1, 2))
check_slicing_tuple("[::55]", "Tuple[int, int, int, int, int]", (0, 1, 2, 3, 4))
check_slicing_tuple("[:4:4]", "Tuple[int, int, int, int, int]", (0, 1, 2, 3, 4))
check_slicing_tuple("[::-1]", "Tuple[int, int, int, int, int, int, int]", (0, 1, 2, 3, 4, 5, 6))
check_slicing_tuple("[7:5:2]", "Tuple[int, int, int, int, int, int, int]", (0, 1, 2, 3, 4, 5, 6))
check_slicing_tuple("[5:7:-2]", "Tuple[int, int, int, int, int, int, int]", (0, 1, 2, 3, 4, 5, 6))
check_slicing_tuple("[::-2]", "Tuple[int, int, int, int, int]", (0, 1, 2, 3, 4))
check_slicing_tuple("[:4:-3]", "Tuple[int, int, int, int, int, int]", (0, 1, 2, 3, 4, 5))
check_slicing_tuple("[3::-2]", "Tuple[int, int, int, int, int]", (0, 1, 2, 3, 4))
def test_index(self):
def consec(size, start=0):
numel = torch.tensor(size).prod().item()
return torch.arange(numel).view(size)
def check_indexing(indexing, tensor):
template = dedent("""
def func(x):
return x{}
""")
self._check_code(template.format(indexing), "func", [tensor])
def check_dynamic_indexing(indexing, tensor, value1, value2):
value1 = torch.tensor(value1)
value2 = torch.tensor(value2)
template = dedent("""
def func(x, value1, value2):
i = int(value1)
j = int(value2)
return x{}
""")
self._check_code(template.format(indexing), "func", [tensor, value1, value2])
# basic slices
check_indexing('[0]', consec((3, 3)))
check_indexing('[1]', consec((3, 3), 10))
check_indexing('[2]', consec((3, 3), 19))
check_indexing('[2]', consec((3,)))
check_indexing('[-1]', consec((3, 3), 19))
check_indexing('[0:2]', consec((3, 3, 3)))
check_indexing('[1:-1]', consec((3, 3, 3)))
check_indexing('[-3:-1]', consec((6, 3)))
check_indexing('[1:]', consec((3, 3)))
check_indexing('[:1]', consec((3, 3)))
check_indexing('[:]', consec((3, 2)))
# multi-dim: indexes
check_indexing('[0, 1]', consec((3, 3)))
check_indexing('[0, 1]', consec((3, 3, 2)))
check_indexing('[1, 0, 2]', consec((3, 3, 3)))
check_indexing('[2, -1]', consec((3, 3)))
# multi-dim: mixed slicing and indexing
check_indexing('[0, 1:2]', consec((3, 3)))
check_indexing('[0, :1]', consec((3, 3, 2)))
check_indexing('[1, 2:]', consec((3, 3, 3)))
check_indexing('[-1, 1:, 0]', consec((3, 3, 3, 3)))
check_indexing('[1:, -1, 0]', consec((3, 3, 3, 3)))
check_indexing('[-1, 2:, 1:2]', consec((3, 3, 3, 3)))
check_indexing('[-1, 1:, 0]', consec((3, 3, 3, 3)))
check_indexing('[-1, :, 0, 2]', consec((3, 3, 3, 3)))
# zero-sized slices
check_indexing('[0:0]', consec((2, 2)))
check_indexing('[0:0, 1]', consec((3, 3)))
# trivial expression usage
check_indexing('[1+1]', consec((3, 3)))
check_indexing('[1:(0 + 2)]', consec((3, 3, 3)))
# None for new dimensions
check_indexing('[None, 0]', consec((3, 3)))
check_indexing('[1, None]', consec((3, 3), 10))
check_indexing('[None, None, 2]', consec((3, 3), 19))
check_indexing('[None, 2, None]', consec((3,)))
check_indexing('[0:2, None]', consec((3, 3, 3)))
check_indexing('[None, 1:-1]', consec((3, 3, 3)))
check_indexing('[None, -3:-1, None]', consec((6, 3)))
check_indexing('[-1, None, 2:, None, 1:2]', consec((3, 3, 3, 3)))
check_indexing('[None, -1, None, 2:, None, 1:2, None]', consec((3, 3, 3, 3)))
# dynamic expression usage
check_dynamic_indexing("[i + j]", consec((3, 3)), 0, 1)
check_dynamic_indexing("[i:j, i]", consec((3, 3, 2)), 0, 2)
def test_advancedindex(self):
def consec(size, start=0):
numel = torch.tensor(size).prod().item()
return torch.arange(numel).view(size)
def check_indexing(indexing, tensor, **kwargs):
indices_dict = kwargs
template = dedent("""
def func(x{formals}):
return x{expr}
""")
formals = []
values = []
for formal, value in indices_dict.items():
formals.append(formal)
values.append(value)
formals = ''.join(map(', {}'.format, formals))
inputs = [tensor] + values
self._check_code(template.format(formals=formals, expr=indexing),
"func", inputs)
# Indexing with tensor (basic)
check_indexing('[i]', consec((3, 3)), i=torch.tensor([0]))
check_indexing('[i]', consec((3, 3)), i=torch.tensor(1))
check_indexing('[i]', consec((3, 3)), i=torch.tensor([-2]))
check_indexing('[i]', consec((3, 3), 2), i=torch.tensor([0, 0]))
check_indexing('[i]', consec((3, 3, 2, 2)), i=torch.tensor([0, -2, 1]))
# NB: indexing with tensors and indexing with sequences can be implemented
# in a very similar way (sequences are converted to tensors), so only one
# case needs to be tested extensively.
# XXX: When we can index with sequences, replace these cases with
# sequence indexing expressions; those are much easier to read.
# Misc sequence advanced indexing
inp = consec((4, 8, 5))
to_check = [
# [[0, 1, 3]]
['[i]', {'i': [0, 1, 3]}],
# [[0, 2], [1, 3]]
['[i, j]', {'i': [0, 2], 'j': [1, 3]}],
# [[[0, 1], [0, 1]], [[0, 1], [0, 1]]]
['[i, j]', {'i': [[0, 1], [0, 1]], 'j': [[0, 1], [0, 1]]}],
# [[0, 2], [1, 3], [1, 1]]
['[i, j, k]', {'i': [0, 2], 'j': [1, 3], 'k': [1, 1]}],
# [[0, 2], 1, [1, 1]]
['[i, j, k]', {'i': [0, 2], 'j': 1, 'k': [1, 1]}],
# [:, :, [0, 3, 4]]
['[:, :, i]', {'i': [0, 3, 4]}],
# [:, [2, 4, 5, 7], 2:4]
['[:, i, 2:4]', {'i': [0, 2, 3]}],
# [[2, 3], :, :]
['[i, :, :]', {'i': [2, 3]}],
# [:, [0, 2, 3], [1, 3, 4]]
['[:, i, j]', {'i': [0, 2, 3], 'j': [1, 3, 4]}],
# [:, [0], [1, 2, 4]]
['[:, i, j]', {'i': [0], 'j': [1, 2, 4]}],
# [:, [0, 1, 3], [4]]
['[:, i, j]', {'i': [0, 1, 3], 'j': [4]}],
# [:, [[0, 1], [1, 0]], [[2, 3]]]
['[:, i, j]', {'i': [[0, 1], [1, 0]], 'j': [[2, 3]]}],
# [:, [[0, 1], [2, 3]], [[0]]]
['[:, i, j]', {'i': [[0, 1], [2, 3]], 'j': [[0]]}],
# [:, [[5, 6]], [[0, 3], [4, 4]]]
['[:, i, j]', {'i': [[5, 6]], 'j': [[0, 3], [4, 4]]}],
# [[0, 2, 3], [1, 3, 4], :]
['[i, j, :]', {'i': [0, 2, 3], 'j': [1, 3, 4]}],
# [0, [1, 2, 4], :]
['[i, j, :]', {'i': 0, 'j': [1, 2, 4]}],
# [[0, 1, 3], 4, :]
['[i, j, :]', {'i': [0, 1, 3], 'j': 4}],
# [[[0, 1], [1, 0]], [[2, 1], [3, 5]], :]
['[i, j, :]', {'i': [[0, 1], [1, 0]], 'j': [[2, 1], [3, 5]]}],
# [[[0, 1], [1, 0]], [[2, 3]], :]
['[i, j, :]', {'i': [[0, 1], [1, 0]], 'j': [[2, 3]]}],
# [[[0, 1], [2, 3]], [[0]], :]
['[i, j, :]', {'i': [[0, 1], [2, 3]], 'j': [[0]]}],
# [[[2, 1]], [[0, 3], [4, 4]], :]
['[i, j, :]', {'i': [[2, 1]], 'j': [[0, 3], [4, 4]]}],
# [[[2]], [[0, 3], [4, 1]], 0:2]
['[i, j, 0:2]', {'i': [[2]], 'j': [[0, 3], [4, 1]]}],
]
for expr, argdict in to_check:
tensordict = {k: torch.tensor(v) for (k, v) in argdict.items()}
check_indexing(expr, inp, **tensordict)
def test_adv_indexing_list(self):
# indexing with list is equivalent to indexing with tensor
def func1(x):
return x[[0, 1, 5]]
def func2(x):
return x[[0, 1], [0, 1]]
def func3(x):
return x[[[0, 1], [0, 1]], [[0, 1], [0, 1]]]
def func4(x):
ls = [0]
ls.append(1)
ls.append(2)
return x[ls]
def func5(x):
ls = [0.1, 1.2, 2.3]
return x[ls]
input = torch.rand((6, 2))
self.checkScript(func1, (input,))
self.checkScript(func2, (input,))
self.checkScript(func3, (input,))
self.checkScript(func4, (input,))
self.checkScript(func5, (input,))
def test_index_ellipses(self):
vals = [":", 1, None]
for _ in range(100):
indices = [random.choice(vals) for _ in range(4)]
indices[random.randint(0, len(indices) - 1)] = "..."
test_str = dedent("""
def f():
x = torch.ones(10, 9, 8, 7, 6)
return x{indices}.shape
""".format(indices=indices))
test_str = test_str.replace(r"'", r'')
scope = {}
execWrapper(test_str, globals(), scope)
cu = torch.jit.CompilationUnit(test_str)
res1 = cu.f()
res2 = scope['f']()
self.assertEqual(res1, res2)
def test_inf(self):
@torch.jit.script
def foo(a):
return a < float('inf')
s = torch.rand(1)
self.assertTrue(foo(s))
@torch.jit.script
def bar(a):
return a > float('-inf')
s = torch.rand(1)
self.assertTrue(foo(s))
# test re-assignment on imported source
str = """
def foo(x):
# type: (bool)
a = float("-inf")
if not x:
a = float(torch.tensor([5]))
return a < 4
"""
cu = torch.jit.CompilationUnit(str)
self.assertTrue(cu.foo(True))
self.assertFalse(cu.foo(False))
def test_str_to_float(self):
@torch.jit.script
def foo(a):
return 0.5 == float('0.5 hello')
s = torch.rand(1)
with self.assertRaisesRegex(RuntimeError, "could not convert string to float"):
self.assertTrue(foo(s))
@torch.jit.script
def foo(a):
return 0.5 == float('0.5')
s = torch.rand(1)
self.assertTrue(foo(s))
@torch.jit.script
def foo(a):
return 0. == float('0')
s = torch.rand(1)
self.assertTrue(foo(s))