blob: 7af4801850130dc1bb1fa359452ba4653422b6f1 [file] [log] [blame]
#include <memory>
#include <sstream>
#include <stdexcept>
#include <unordered_map>
#include <gtest/gtest.h>
#include <test/cpp/tensorexpr/padded_buffer.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/bounds_inference.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
static void verifyConstBounds(
const TensorAccessBoundsInfo& access_info,
const std::vector<std::pair<int, int>>& ref) {
size_t ndim = ref.size();
ASSERT_EQ(access_info.start.size(), ndim);
ASSERT_EQ(access_info.stop.size(), ndim);
for (size_t i = 0; i < ndim; i++) {
if (ref[i].first >= 0) { // Negative values are used to skip the check
ASSERT_TRUE(access_info.start[i]->isConstant());
int start_i = immediateAs<int>(access_info.start[i]);
ASSERT_EQ(start_i, ref[i].first);
}
if (ref[i].second >= 0) {
ASSERT_TRUE(access_info.stop[i]->isConstant());
int stop_i = immediateAs<int>(access_info.stop[i]);
ASSERT_EQ(stop_i, ref[i].second);
}
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, _1) {
// Verify that bounds inference works for the following example:
// for i in 0..100:
// b[i] = a[i]
// For this loop bounds inference should yield the following:
// {{b, kStore, 0, 99}, {a, kLoad, 0, 99}}
KernelScope kernel_scope;
ExprHandle n(100);
Placeholder a(BufHandle("a", {n}, kFloat));
Tensor* b =
Compute("b", {{n, "i"}}, [&](const VarHandle& i) { return a.load(i); });
LoopNest l({b});
auto bounds_info = inferBounds(l.root_stmt());
// We should have two entries: one for 'b' and one for 'a'.
ASSERT_EQ(bounds_info.size(), 2);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{0, 99}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(b->buf())[0], {{0, 99}});
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, _2) {
// Verify that bounds inference works for the following example:
// for i in 0..n:
// b[i] = a[i]
// For this loop bounds inference should yield the following:
// {{b, kStore, 0, n-1}, {a, kLoad, 0, n-1}}
KernelScope kernel_scope;
VarHandle n("n", kInt);
Placeholder a(BufHandle("a", {n}, kFloat));
Tensor* b =
Compute("b", {{n, "i"}}, [&](const VarHandle& i) { return a.load(i); });
LoopNest l({b});
auto bounds_info = inferBounds(l.root_stmt());
// We should have two entries: one for 'b' and one for 'a'.
ASSERT_EQ(bounds_info.size(), 2);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{0, -1}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(b->buf())[0], {{0, -1}});
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, _3) {
// Verify that bounds inference works for the following example:
// for i in 0..100:
// b[i] = a[i] * a[i+10]
// For this loop bounds inference should yield the following:
// {{b, kStore, 0, 99}, {a, kLoad, 0, 109}}
KernelScope kernel_scope;
ExprHandle n(100);
Placeholder a(BufHandle("a", {n + 10}, kFloat));
Tensor* b = Compute("b", {{n, "i"}}, [&](const VarHandle& i) {
return a.load(i) * a.load(i + 10);
});
LoopNest l({b});
auto bounds_info = inferBounds(l.root_stmt());
// We should have two entries: one for 'b' and one for 'a'.
ASSERT_EQ(bounds_info.size(), 2);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{0, 109}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(b->buf())[0], {{0, 99}});
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, _4) {
// Verify that bounds inference works for the following example:
//
// for y in 0..200:
// for x in 0..320:
// b[y,x] = x*y
// for y in 0..200:
// for x in 0..320:
// c[y,x] = a[y,x] * b[y,x]
KernelScope kernel_scope;
ExprHandle W(320);
ExprHandle H(200);
Placeholder a(BufHandle("a", {H, W}, kFloat));
Tensor* b = Compute(
"b", {{H, "y"}, {W, "x"}}, [&](const VarHandle& y, const VarHandle& x) {
return x * y;
});
Tensor* c = Compute(
"c", {{H, "y"}, {W, "x"}}, [&](const VarHandle& y, const VarHandle& x) {
return a.load(y, x) * b->load(y, x);
});
LoopNest l({c});
std::vector<For*> loops = l.getLoopStmtsFor(c);
Stmt* body = l.getLoopBodyFor(c);
{
// Infer bounds on the top-level loop scope
auto bounds_info = inferBounds(loops[0]);
ASSERT_EQ(bounds_info.size(), 3);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{0, 199}, {0, 319}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(b->buf())[0], {{0, 199}, {0, 319}});
ASSERT_EQ(bounds_info.at(c->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(c->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(c->buf())[0], {{0, 199}, {0, 319}});
}
{
// Infer bounds on the inner loop scope
auto bounds_info = inferBounds(loops[1]);
ASSERT_EQ(bounds_info.size(), 3);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{-1, -1}, {0, 319}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(b->buf())[0], {{-1, -1}, {0, 319}});
ASSERT_EQ(bounds_info.at(c->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(c->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(c->buf())[0], {{-1, -1}, {0, 319}});
}
{
// Infer bounds on the inner loop body's scope
auto bounds_info = inferBounds(body);
ASSERT_EQ(bounds_info.size(), 3);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{-1, -1}, {-1, -1}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(b->buf())[0], {{-1, -1}, {-1, -1}});
ASSERT_EQ(bounds_info.at(c->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(c->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(c->buf())[0], {{-1, -1}, {-1, -1}});
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, _5) {
// Verify that bounds inference works for the following example:
// for i in 0..100:
// b[i] = a[i]
//
// ==> split ==>
//
// for i_outer in 0..100/16:
// for i_inner in 0..16:
// b[i_outer * 16 + i_inner] = a[i_outer * 16 + i_inner]
// for i_tail in 0..100%16:
// b[i_tail + (100/16)*16] = a[i_tail + (100/16)*16];
KernelScope kernel_scope;
ExprHandle n(100);
Placeholder a(BufHandle("a", {n}, kFloat));
Tensor* b =
Compute("b", {{n, "i"}}, [&](const VarHandle& i) { return a.load(i); });
LoopNest l({b});
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* inner;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* tail;
std::vector<For*> loops = l.getLoopStmtsFor(b);
LoopNest::splitWithTail(loops[0], 16, &inner, &tail);
For* outer = loops[0];
{
// Verify inferred bounds for the outer loop
auto bounds_info = inferBounds(outer);
ASSERT_EQ(bounds_info.size(), 2);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{0, 95}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(b->buf())[0], {{0, 95}});
}
{
// Verify inferred bounds for the tail loop
auto bounds_info = inferBounds(tail);
ASSERT_EQ(bounds_info.size(), 2);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{96, 99}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(b->buf())[0], {{96, 99}});
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, _6) {
// Verify that bounds inference works for the following example:
//
// for y in 0..200:
// for x in 0..320:
// b[y,x] = x*y
// for y in 0..20:
// for x in 0..32:
// c[y,x] = a[y+100,x+100] * b[y*2,x*5]
KernelScope kernel_scope;
ExprHandle W(320);
ExprHandle H(200);
ExprHandle CW(32);
ExprHandle CH(20);
Placeholder a(BufHandle("a", {H, W}, kFloat));
Tensor* b = Compute(
"b", {{H, "y"}, {W, "x"}}, [&](const VarHandle& y, const VarHandle& x) {
return x * y;
});
Tensor* c = Compute(
"c", {{CH, "y"}, {CW, "x"}}, [&](const VarHandle& y, const VarHandle& x) {
return a.load(y + 100, x + 100) * b->load(y * 2, x * 5);
});
LoopNest l({c});
std::vector<For*> loops = l.getLoopStmtsFor(c);
Stmt* body = l.getLoopBodyFor(c);
{
// Infer bounds on the top-level loop scope
auto bounds_info = inferBounds(loops[0]);
ASSERT_EQ(bounds_info.size(), 3);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{100, 119}, {100, 131}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(b->buf())[0], {{0, 38}, {0, 155}});
ASSERT_EQ(bounds_info.at(c->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(c->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(c->buf())[0], {{0, 19}, {0, 31}});
}
{
// Infer bounds on the inner loop scope
auto bounds_info = inferBounds(loops[1]);
ASSERT_EQ(bounds_info.size(), 3);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{-1, -1}, {100, 131}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(b->buf())[0], {{-1, -1}, {0, 155}});
ASSERT_EQ(bounds_info.at(c->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(c->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(c->buf())[0], {{-1, -1}, {0, 31}});
}
{
// Infer bounds on the inner loop body's scope
auto bounds_info = inferBounds(body);
ASSERT_EQ(bounds_info.size(), 3);
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{-1, -1}, {-1, -1}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(b->buf())[0], {{-1, -1}, {-1, -1}});
ASSERT_EQ(bounds_info.at(c->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(c->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(c->buf())[0], {{-1, -1}, {-1, -1}});
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, Adjacent) {
KernelScope kernel_scope;
ExprHandle H(6);
Placeholder a(BufHandle("a", {20}, kFloat));
Tensor* b =
Compute("b", {{H, "x"}}, [&](const VarHandle& x) { return a.load(x); });
Tensor* c = Compute(
"c", {{H, "x"}}, [&](const VarHandle& x) { return a.load(x + H); });
LoopNest l({b, c});
std::vector<For*> loops = NodeFinder<For>::find(l.root_stmt());
{
// Infer bounds on the top-level loop scope
auto bounds_info = inferBounds(loops[0]);
ASSERT_EQ(bounds_info.size(), 2);
// reads from a[0:5], writes to b[0:5]
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{0, 5}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(b->buf())[0], {{0, 5}});
}
{
// Infer bounds on the inner loop scope
auto bounds_info = inferBounds(loops[1]);
ASSERT_EQ(bounds_info.size(), 2);
// reads from a[0+6:5+6], writes to c[0:5]
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{6, 11}});
ASSERT_EQ(bounds_info.at(c->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(c->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(c->buf())[0], {{0, 5}});
}
{
// Infer bounds on the high level program.
auto bounds_info = inferBounds(l.root_stmt());
ASSERT_EQ(bounds_info.size(), 3);
// Should be union of above 2 bounds, but this time the bounds of A can be
// merged.
ASSERT_EQ(bounds_info.at(a.data()).size(), 1);
ASSERT_EQ(bounds_info.at(a.data())[0].kind, kLoad);
verifyConstBounds(bounds_info.at(a.data())[0], {{0, 11}});
ASSERT_EQ(bounds_info.at(b->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(b->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(b->buf())[0], {{0, 5}});
ASSERT_EQ(bounds_info.at(c->buf()).size(), 1);
ASSERT_EQ(bounds_info.at(c->buf())[0].kind, kStore);
verifyConstBounds(bounds_info.at(c->buf())[0], {{0, 5}});
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, MultipleTopLoopLoad) {
KernelScope kernel_scope;
Placeholder a(BufHandle("a", {100}, kFloat));
Tensor* b =
Compute("b", {{64, "x"}}, [&](const VarHandle& x) { return a.load(x); });
Tensor* c = Compute(
"c", {{32, "x"}}, [&](const VarHandle& x) { return a.load(x + 10); });
Tensor* d = Compute(
"d", {{96, "x"}}, [&](const VarHandle& x) { return a.load(x + 2); });
LoopNest l({b, c, d});
auto bounds_info = inferBounds(l.root_stmt());
ASSERT_EQ(bounds_info.size(), 4);
// a only read.
{
auto bounds = bounds_info[a.data()];
ASSERT_EQ(bounds.size(), 1);
// One dimension.
auto bound = bounds[0];
ASSERT_EQ(bound.kind, TensorAccessKind::kLoad);
// Bounds:
// start: Min of the 3 load bounds = Min of loop starts + offset = 0+0 (b).
// stop: Max of the 3 load bounds = Max of loop stops + offset - 1 =
// 96 + 2 - 1 (d).
verifyConstBounds(bound, {{0, 97}});
}
// b, c, d only written.
{
auto bounds = bounds_info[b->buf()];
ASSERT_EQ(bounds.size(), 1);
auto bound = bounds[0];
ASSERT_EQ(bound.kind, TensorAccessKind::kStore);
// Just the loop extents for b.
verifyConstBounds(bound, {{0, 63}});
}
{
auto bounds = bounds_info[c->buf()];
ASSERT_EQ(bounds.size(), 1);
auto bound = bounds[0];
ASSERT_EQ(bound.kind, TensorAccessKind::kStore);
// Just the loop extents for c.
verifyConstBounds(bound, {{0, 31}});
}
{
auto bounds = bounds_info[d->buf()];
ASSERT_EQ(bounds.size(), 1);
auto bound = bounds[0];
ASSERT_EQ(bound.kind, TensorAccessKind::kStore);
// Just the loop extents for d.
verifyConstBounds(bound, {{0, 95}});
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, MultipleTopLoopStore) {
KernelScope kernel_scope;
BufHandle a("a", {100}, kFloat);
BufHandle b("b", {100}, kFloat);
BufHandle c("c", {100}, kFloat);
BufHandle d("d", {100}, kFloat);
VarHandle x("x", kInt);
// Same as above but the offsets are on the Store now.
// Can't do this through ComputeAPI without transforms we don't have yet.
Stmt* stmt = Block::make(
{For::make(x, 0, 64, Store::make(b, {x}, Load::make(a, {x}))),
For::make(x, 0, 32, Store::make(c, {x + 10}, Load::make(a, {x}))),
For::make(x, 0, 96, Store::make(d, {x + 2}, Load::make(a, {x})))});
auto bounds_info = inferBounds(stmt);
ASSERT_EQ(bounds_info.size(), 4);
// a only read.
{
auto bounds = bounds_info[a.node()];
ASSERT_EQ(bounds.size(), 1);
// One dimension.
auto bound = bounds[0];
ASSERT_EQ(bound.kind, TensorAccessKind::kLoad);
// Bounds: there are no offsets, so this is just the max loop bounds.
verifyConstBounds(bound, {{0, 95}});
}
// b, c, d only written.
{
auto bounds = bounds_info[b.node()];
ASSERT_EQ(bounds.size(), 1);
auto bound = bounds[0];
ASSERT_EQ(bound.kind, TensorAccessKind::kStore);
// This should be equivalent to {offset, extent + offset} for the b loop.
// b loop has no offset, so just the loop extents.
verifyConstBounds(bound, {{0, 63}});
}
{
auto bounds = bounds_info[c.node()];
ASSERT_EQ(bounds.size(), 1);
auto bound = bounds[0];
ASSERT_EQ(bound.kind, TensorAccessKind::kStore);
// This should be equivalent to {offset, extent + offset} for the c loop.
// Offset is 10, extent is 32-1.
verifyConstBounds(bound, {{10, 41}});
}
{
auto bounds = bounds_info[d.node()];
ASSERT_EQ(bounds.size(), 1);
auto bound = bounds[0];
ASSERT_EQ(bound.kind, TensorAccessKind::kStore);
// This should be equivalent to {offset, extent + offset} for the d loop.
// Offset is 2, extent is 96-1.
verifyConstBounds(bound, {{2, 97}});
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, CacheReads) {
KernelScope kernel_scope;
Tensor* A = Compute(
"A", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return i * j;
});
Tensor* B = Compute(
"B", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 30, j + 3);
});
Tensor* C = Compute(
"C", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 10, j + 20) + A->load(i + 30, j + 40);
});
LoopNest l({B, C});
auto bounds_info_before = inferBounds(l.root_stmt());
Stmt* j_loop = l.getLoopStmtsFor(B)[1];
LoopNest::cacheAccesses(A->buf(), "A_local", j_loop);
auto bounds_info_after = inferBounds(l.root_stmt());
// CacheAccesses should not change existing bounds, but add a new one for the
// cache.
for (auto& pair : bounds_info_after) {
auto beforeIt = bounds_info_before.find(pair.first);
if (beforeIt != bounds_info_before.end()) {
// Same number of TensorAccessBoundInfos.
ASSERT_EQ(pair.second.size(), beforeIt->second.size());
for (size_t i = 0; i < pair.second.size(); ++i) {
TensorAccessBoundsInfo& after = pair.second[i];
TensorAccessBoundsInfo& before = beforeIt->second[i];
// Same number of dimensions.
ASSERT_EQ(before.start.size(), after.start.size());
// Bounds are equal.
for (size_t j = 0; j < before.start.size(); ++j) {
ASSERT_TRUE(exprEquals(before.start[j], after.start[j]));
ASSERT_TRUE(exprEquals(before.stop[j], after.stop[j]));
}
}
} else {
// This should be the cache.
ASSERT_EQ(pair.first->name_hint(), "A_local");
// Should have both a load and a store.
ASSERT_EQ(pair.second.size(), 2);
TensorAccessBoundsInfo& first = pair.second[0];
TensorAccessBoundsInfo& second = pair.second[1];
ASSERT_NE(first.kind, second.kind);
// 2 dimensions.
ASSERT_EQ(first.start.size(), second.start.size());
ASSERT_EQ(first.start.size(), 2);
// bounds for load and store are equal.
for (size_t j = 0; j < first.start.size(); ++j) {
ASSERT_TRUE(exprEquals(first.start[j], second.start[j]));
ASSERT_TRUE(exprEquals(first.stop[j], second.stop[j]));
}
}
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, Flattened) {
KernelScope kernel_scope;
Tensor* b = Compute(
"b",
{{3, "z"}, {4, "y"}, {5, "x"}},
[&](const VarHandle& z, const VarHandle& y, const VarHandle& x) {
return x * y + z;
});
LoopNest l({b});
// Flatten indices.
l.prepareForCodegen();
auto bounds_info = inferBounds(l.root_stmt());
// There's only one buffer.
ASSERT_EQ(bounds_info.size(), 1);
auto& TABI = bounds_info[b->buf()][0];
ASSERT_EQ(TABI.kind, TensorAccessKind::kStore);
// Flattened bounds should have a single dimension.
ASSERT_EQ(TABI.start.size(), 1);
ASSERT_EQ(TABI.stop.size(), 1);
// Bounds should be 0 -> (3*4*5)-1
ASSERT_TRUE(exprEquals(TABI.start[0], new IntImm(0)));
ASSERT_TRUE(exprEquals(TABI.stop[0], new IntImm(3 * 4 * 5 - 1)));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, GetPotentialHazards) {
KernelScope kernel_scope;
BufHandle a("A", {5}, kInt);
BufHandle b("B", {5}, kInt);
BufHandle c("C", {5}, kInt);
VarHandle x("x", kInt);
VarHandle y("y", kInt);
using namespace analysis;
{
/*
* A[0] = B[0];
* B[0] = 3; WAR on B
* A[0] = B[0]; WAW on A, RAW on B
* C[0] = 5;
*/
Store* store1 = Store::make(a, {0}, Load::make(b, {0}));
Store* store2 = Store::make(b, {0}, 3);
Store* store3 = Store::make(a, {0}, Load::make(b, {0}));
Store* store4 = Store::make(c, {0}, 5);
Stmt* stmt = Block::make({store1, store2, store3, store4});
MemDependencyChecker analyzer;
stmt->accept(&analyzer);
ASSERT_EQ(
HazardKind::WriteAfterRead,
getPotentialHazards(analyzer, store1, store2));
ASSERT_EQ(
HazardKind::ReadAfterWrite,
getPotentialHazards(analyzer, store2, store3));
ASSERT_EQ(
HazardKind::WriteAfterWrite,
getPotentialHazards(analyzer, store1, store3));
// Fourth store has no dependencies
ASSERT_EQ(
HazardKind::NoDependency,
getPotentialHazards(analyzer, store1, store4));
ASSERT_EQ(
HazardKind::NoDependency,
getPotentialHazards(analyzer, store2, store4));
ASSERT_EQ(
HazardKind::NoDependency,
getPotentialHazards(analyzer, store3, store4));
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, GetPotentialHazardsLoopNoHazard) {
KernelScope kernel_scope;
Tensor* A = Compute(
"A", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return i * j;
});
Tensor* B = Compute(
"B", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return (i + 1) * (j + 1);
});
LoopNest l({A, B});
using namespace analysis;
MemDependencyChecker analyzer;
l.root_stmt()->accept(&analyzer);
For* loopRootA = l.getLoopStmtsFor(A)[0];
For* loopRootB = l.getLoopStmtsFor(B)[0];
// No dependencies between loops.
ASSERT_EQ(
HazardKind::NoDependency,
getPotentialHazards(analyzer, loopRootA, loopRootB));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, GetPotentialHazardsLoopCall) {
KernelScope kernel_scope;
Tensor* A = Compute(
"A", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return i * j;
});
Tensor* B = Compute(
"B", {{64, "i"}, {64, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i, j) + 5;
});
LoopNest l({A, B});
using namespace analysis;
MemDependencyChecker analyzer;
l.root_stmt()->accept(&analyzer);
For* loopRootA = l.getLoopStmtsFor(A)[0];
For* loopRootB = l.getLoopStmtsFor(B)[0];
ASSERT_EQ(
HazardKind::ReadAfterWrite,
getPotentialHazards(analyzer, loopRootA, loopRootB));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, GetPotentialHazardsLoopSplit) {
KernelScope kernel_scope;
Tensor* A = Compute(
"A", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return i * j;
});
LoopNest l({A});
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For *inner, *tail;
// Splitting with tail by something offset creates a tail which also writes to
// A.
For* outer = l.getLoopStmtsFor(A)[0];
// `outer` loop get transformed to the outer loop after splitting.
LoopNest::splitWithTail(outer, 5, &inner, &tail);
using namespace analysis;
MemDependencyChecker analyzer;
l.root_stmt()->accept(&analyzer);
ASSERT_EQ(
HazardKind::WriteAfterWrite, getPotentialHazards(analyzer, outer, tail));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlapSameBufferWithPartialOverlap) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 10; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 10; k < 100; k++) {
// A[k-1] = 20 * k;
// }
BufHandle a_buf("A", {200}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 10, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK =
For::make(k, 10, 100, Store::make(a_buf, {k - 1}, Mul::make(20, k)));
auto par = Block::make({forJ, forK});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_TRUE(hasConflictingOverlap(analyzer, forJ, forK));
ASSERT_TRUE(hasConflictingOverlap(analyzer, forK, forJ));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlapSameBufferWithFullOverlap) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 10; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 10; k < 100; k++) {
// A[k] = 20 * k;
// }
BufHandle a_buf("A", {200}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 10, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK = For::make(k, 10, 100, Store::make(a_buf, {k}, Mul::make(20, k)));
auto par = Block::make({forJ, forK});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_TRUE(hasConflictingOverlap(analyzer, forJ, forK));
ASSERT_TRUE(hasConflictingOverlap(analyzer, forK, forJ));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlapSameBufferWithFullOverlapRAW) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 10; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 10; k < 100; k++) {
// B[k] = A[k];
// }
BufHandle a_buf("A", {200}, kInt);
BufHandle b_buf("B", {200}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 10, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK =
For::make(k, 10, 100, Store::make(b_buf, {k}, Load::make(a_buf, {k})));
auto par = Block::make({forJ, forK});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_TRUE(hasConflictingOverlap(analyzer, forJ, forK));
ASSERT_TRUE(hasConflictingOverlap(analyzer, forK, forJ));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlapSameBufferNotOverlapping) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 10; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 10; k < 100; k++) {
// A[k+100] = 20 * k;
// }
BufHandle a_buf("A", {200}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 10, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK =
For::make(k, 10, 100, Store::make(a_buf, {k + 100}, Mul::make(20, k)));
auto par = Block::make({forJ, forK});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_FALSE(hasConflictingOverlap(analyzer, forJ, forK));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forK, forJ));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlap2DBufferWithOverlap) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 100; j++) {
// A[i,j] = i * j * 500;
// }
// }
// for (int m = 0; m < 20; m++) {
// for (int n = 0; n < 50; n++) {
// A[m+1,n] = m + n * 100;
// }
// }
BufHandle a_buf("A", {20, 100}, kInt);
BufHandle b_buf("B", {20, 50}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
auto storeA1 = Store::make(a_buf, {i, j}, Mul::make(Mul::make(i, j), 500));
auto forJ = For::make(j, 0, 100, storeA1);
auto forI = For::make(i, 0, 20, forJ);
auto storeA2 =
Store::make(a_buf, {m + 1, n}, Add::make(m, Mul::make(n, 100)));
auto forN = For::make(n, 0, 50, storeA2);
auto forM = For::make(m, 0, 20, forN);
auto par = Block::make({forI, forM});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_TRUE(hasConflictingOverlap(analyzer, forI, forM));
ASSERT_TRUE(hasConflictingOverlap(analyzer, forM, forI));
ASSERT_TRUE(hasConflictingOverlap(analyzer, forJ, forN));
ASSERT_TRUE(hasConflictingOverlap(analyzer, forN, forJ));
ASSERT_TRUE(hasConflictingOverlap(analyzer, storeA1, storeA2));
ASSERT_TRUE(hasConflictingOverlap(analyzer, storeA2, storeA1));
ASSERT_TRUE(hasConflictingOverlap(analyzer, forJ, storeA2));
ASSERT_TRUE(hasConflictingOverlap(analyzer, storeA1, forM));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlap2DBufferWithNoOverlap) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 100; j++) {
// A[i,j] = i * j * 500;
// }
// }
// for (int m = 0; m < 20; m++) {
// for (int n = 0; n < 50; n++) {
// A[m+20,n+100] = m + n * 100;
// }
// }
BufHandle a_buf("A", {20, 100}, kInt);
BufHandle b_buf("B", {20, 50}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
auto storeA1 = Store::make(a_buf, {i, j}, Mul::make(Mul::make(i, j), 500));
auto forJ = For::make(j, 0, 100, storeA1);
auto forI = For::make(i, 0, 20, forJ);
auto storeA2 =
Store::make(a_buf, {m + 20, n + 100}, Add::make(m, Mul::make(n, 100)));
auto forN = For::make(n, 0, 50, storeA2);
auto forM = For::make(m, 0, 20, forN);
auto par = Block::make({forI, forM});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_FALSE(hasConflictingOverlap(analyzer, forI, forM));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forM, forI));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forJ, forN));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forN, forJ));
ASSERT_FALSE(hasConflictingOverlap(analyzer, storeA1, storeA2));
ASSERT_FALSE(hasConflictingOverlap(analyzer, storeA2, storeA1));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forJ, storeA2));
ASSERT_FALSE(hasConflictingOverlap(analyzer, storeA1, forM));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlapDifferentBuffers) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 100; j++) {
// A[i,j] = i * j * 500;
// }
// }
// for (int m = 0; m < 20; m++) {
// for (int n = 0; n < 50; n++) {
// B[m,n] = m + n * 100;
// }
// }
BufHandle a_buf("A", {20, 100}, kInt);
BufHandle b_buf("B", {20, 50}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
auto storeA1 = Store::make(a_buf, {i, j}, Mul::make(Mul::make(i, j), 500));
auto forJ = For::make(j, 0, 100, storeA1);
auto forI = For::make(i, 0, 20, forJ);
auto storeA2 = Store::make(b_buf, {m, n}, Add::make(m, Mul::make(n, 100)));
auto forN = For::make(n, 0, 50, storeA2);
auto forM = For::make(m, 0, 20, forN);
auto par = Block::make({forI, forM});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_FALSE(hasConflictingOverlap(analyzer, forI, forM));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forM, forI));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forJ, forN));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forN, forJ));
ASSERT_FALSE(hasConflictingOverlap(analyzer, storeA1, storeA2));
ASSERT_FALSE(hasConflictingOverlap(analyzer, storeA2, storeA1));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forJ, storeA2));
ASSERT_FALSE(hasConflictingOverlap(analyzer, storeA1, forM));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlapDueToRAWDependence) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 0; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 0; k < 100; k++) {
// B[k] = 20 * A[99-k];
// }
BufHandle a_buf("A", {100}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 0, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK = For::make(
k,
0,
100,
Store::make(
b_buf, {k}, Mul::make(20, Load::make(a_buf, {ExprHandle(99) - k}))));
auto par = Block::make({forJ, forK});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_TRUE(hasConflictingOverlap(analyzer, forJ, forK));
ASSERT_TRUE(hasConflictingOverlap(analyzer, forK, forJ));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlapDueToWARDependence) {
KernelScope kernel_scope;
// Input IR:
// for (int k = 0; k < 100; k++) {
// B[k] = 20 * A[99-k];
// }
// for (int j = 0; j < 100; j++) {
// A[j] = 10 * j;
// }
BufHandle a_buf("A", {100}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forK = For::make(
k,
0,
100,
Store::make(
b_buf, {k}, Mul::make(20, Load::make(a_buf, {ExprHandle(99) - k}))));
auto forJ = For::make(j, 0, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto par = Block::make({forK, forJ});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_TRUE(hasConflictingOverlap(analyzer, forJ, forK));
ASSERT_TRUE(hasConflictingOverlap(analyzer, forK, forJ));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, HasConflictingOverlapWithLoads) {
KernelScope kernel_scope;
// Input IR:
// for (int k = 10; k < 100; k++) {
// B[k] = 20 * A[99-k];
// }
// for (int j = 10; j < 100; j++) {
// C[j] = 10 * A[j];
// }
BufHandle a_buf("A", {100}, kInt);
BufHandle b_buf("B", {100}, kInt);
BufHandle c_buf("C", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forK = For::make(
k,
10,
100,
Store::make(
b_buf, {k}, Mul::make(20, Load::make(a_buf, {ExprHandle(99) - k}))));
auto forJ = For::make(
j,
10,
100,
Store::make(c_buf, {j}, Mul::make(10, Load::make(a_buf, {j}))));
auto par = Block::make({forK, forJ});
tensorexpr::analysis::MemDependencyChecker analyzer;
par->accept(&analyzer);
ASSERT_FALSE(hasConflictingOverlap(analyzer, forJ, forK));
ASSERT_FALSE(hasConflictingOverlap(analyzer, forK, forJ));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(BoundsInference, IsOverlapping) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 100; i++) {
// A[i] = i * 10; // storeA1
// B[i] = A[99-i] * 20; // loadA1
// C[i] = A[i + 100] * 10; // loadA2
// A[i + 50] = i * 50; // storeA2
// A[i + 150] = i * 150; // storeA3
// }
BufHandle a_buf("A", {300}, kInt);
BufHandle b_buf("B", {100}, kInt);
BufHandle c_buf("C", {100}, kInt);
VarHandle i("i", kInt);
auto storeA1 = Store::make(a_buf, {i}, i * 10);
auto loadA1 = Load::make(a_buf, {ExprHandle(99) - i});
auto storeB = Store::make(b_buf, {i}, Mul::make(loadA1, 20));
auto loadA2 = Load::make(a_buf, {i + 100});
auto storeC = Store::make(c_buf, {i}, Mul::make(loadA2, 10));
auto storeA2 = Store::make(a_buf, {i + 50}, i * 50);
auto storeA3 = Store::make(a_buf, {i + 150}, i * 150);
auto forI = For::make(
i, 0, 100, Block::make({storeA1, storeB, storeC, storeA2, storeA3}));
tensorexpr::analysis::MemDependencyChecker analyzer;
forI->accept(&analyzer);
ASSERT_TRUE(
isOverlapping(analyzer, storeA1, dynamic_cast<Load*>(loadA1.node())));
ASSERT_FALSE(
isOverlapping(analyzer, storeA1, dynamic_cast<Load*>(loadA2.node())));
ASSERT_TRUE(isOverlapping(analyzer, storeA1, storeA2));
ASSERT_FALSE(isOverlapping(analyzer, storeA1, storeA3));
}
} // namespace jit
} // namespace torch