blob: 4bbec221474343871338876060ae7ae86d98621b [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/SparseTensorImpl.h>
namespace at {
namespace {
DeviceType sparseTensorIdToDeviceType(TensorTypeId type_id) {
if (type_id == SparseCPUTensorId()) {
return kCPU;
} else if (type_id == SparseCUDATensorId()) {
return kCUDA;
} else {
AT_ERROR("Cannot construct SparseTensor with non-sparse tensor type ID ", type_id);
}
}
}
// An empty dense tensor defaults to a 1-dimensional tensor of size [0]
// (recall, it is not a 0-dimensional tensor, because such a tensor would
// a scalar and have one element)
//
// Thus, an empty sparse tensor should be a 1-dimensional tensor of size [0].
// Furthermore, we have dim == sparseDims + denseDims; since this is a sparse
// tensor, let us say that an empty sparse tensor has sparseDims == 1 and
// denseDims == 0. (There is a degree of freedom here, but given that this
// is a sparse dimension, it seems reasonable to demand that sparseDims > 0).
//
// This means that we allocate a [1,0] size indices tensor and a [0] size
// values tensor for such an empty tensor.
SparseTensorImpl::SparseTensorImpl(at::TensorTypeId type_id, const caffe2::TypeMeta& data_type)
: TensorImpl(type_id, data_type, nullptr, false)
, size_{0}
, sparseDims_(1)
, denseDims_(0)
, indices_(at::empty({1, 0}, TensorOptions(false).device(sparseTensorIdToDeviceType(type_id)).dtype(ScalarType::Long)))
, values_(at::empty({0}, TensorOptions(false).device(sparseTensorIdToDeviceType(type_id)).dtype(dataTypeToScalarType(data_type.id())))) {}
IntList SparseTensorImpl::sizes() const {
return size_;
}
IntList SparseTensorImpl::strides() const {
AT_ERROR("sparse tensors do not have strides");
}
bool SparseTensorImpl::is_contiguous() const {
AT_ERROR("sparse tensors do not have is_contiguous");
}
int64_t SparseTensorImpl::size(int64_t d) const {
d = at::maybe_wrap_dim(d, dim(), false);
return size_[d];
}
int64_t SparseTensorImpl::stride(int64_t d) const {
AT_ERROR("sparse tensors do not have strides");
}
void SparseTensorImpl::resize_dim(int64_t ndim) {
AT_ERROR("sparse tensors do not have resize_dim");
}
void SparseTensorImpl::set_size(int64_t dim, int64_t new_size) {
AT_ERROR("sparse tensors do not have set_size");
}
void SparseTensorImpl::set_stride(int64_t dim, int64_t new_stride) {
AT_ERROR("sparse tensors do not have set_stride");
}
void SparseTensorImpl::set_storage_offset(int64_t storage_offset) {
AT_ERROR("sparse tensors do not have set_storage_offset");
}
int64_t SparseTensorImpl::dim() const {
return sparseDims_ + denseDims_;
}
TensorImpl* SparseTensorImpl::maybe_zero_dim(bool condition_when_zero_dim) {
AT_CHECK(condition_when_zero_dim == (dim() == 0),
"Attempted to maybe_zero_dim on a SparseTensorImpl to ", condition_when_zero_dim,
" but the SparseTensor's dim() is ", dim(), " and SparseTensors do not support"
" changing dimensionality via maybe_zero_dim");
return this;
}
const Storage& SparseTensorImpl::storage() const {
AT_ERROR("sparse tensors do not have storage");
}
int64_t SparseTensorImpl::storage_offset() const {
AT_ERROR("sparse tensors do not have storage");
}
void SparseTensorImpl::set_indices_and_values_unsafe(const Tensor& indices, const Tensor& values) {
AT_CHECK(values.type().toSparse() == type(), "values type must match sparse tensor type");
AT_CHECK(indices.type().scalarType() == kLong, "indices must be an int64 tensor");
AT_CHECK(indices.type().backend() == values.type().backend(), "backend of indices (", indices.type().backend(), ") must match backend of values (", values.type().backend(), ")");
AT_CHECK(!indices.is_cuda() || indices.get_device() == values.get_device(), "device of indices (", indices.get_device(), ") must match device of values (", values.get_device(), ")");
AT_CHECK(indices.dim() == 2, "indices must be nDim x nnz, but got: ", indices.sizes());
AT_CHECK(indices.size(1) == values.size(0), "indices and values must have same nnz, but got nnz from indices: ", indices.size(1), ", nnz from values: ", values.size(0));
AT_CHECK(indices.size(0) == sparseDims_, "indices has incorrect first dimension, expected ", sparseDims_, ", got ", indices.size(0));
AT_CHECK(values.dim() == denseDims_ + 1, "values has incorrect number of dimensions, expected ", denseDims_ + 1, ", got ", values.dim());
auto dense_size_original = sizes().slice(sparseDims_);
std::vector<int64_t> expected_values_size_vec = {values.size(0)};
expected_values_size_vec.insert(expected_values_size_vec.end(), dense_size_original.begin(), dense_size_original.end());
IntList expected_values_size(expected_values_size_vec);
auto new_values_size = values.sizes();
AT_CHECK(
std::equal(expected_values_size.begin(), expected_values_size.end(), new_values_size.begin()),
"values has incorrect size, expected ", expected_values_size, ", got ", new_values_size
);
indices_ = indices;
values_ = values;
coalesced_ = false;
}
} // namespace at