blob: 8389f3912075b9966bff8999b5916e440a0cbd3d [file] [log] [blame]
# Owner(s): ["module: onnx"]
import pytorch_test_common
import torch
import torch._dynamo
import torch.fx
from torch.onnx._internal.fx.passes import _utils as pass_utils
from torch.testing._internal import common_utils
class TestFxPasses(common_utils.TestCase):
def test_set_node_name_correctly_renames_when_new_name_collides_recursively(self):
def func(x, y, z):
return x + y + z
x = torch.randn(3)
y = torch.randn(3)
z = torch.randn(3)
gm, _ = torch._dynamo.export(func)(x, y, z)
torch._dynamo.reset()
# Purposely name the nodes in a way that will cause a recursive collision later.
# See :func:`set_node_name` for name collision renaming logic.
base_name = "tensor"
nodes = list(gm.graph.nodes)
for i, node in enumerate(nodes[1:]):
if i == 0:
node.name = base_name
else:
node.name = f"{base_name}.{i}"
# Run `set_node_name` and verify that the names are correct.
name_to_node = {node.name: node for node in gm.graph.nodes}
pass_utils.set_node_name(nodes[0], base_name, name_to_node)
assert nodes[0].name == base_name, f"Expected {base_name}, got {nodes[0].name}"
assert len({node.name for node in nodes}) == len(
nodes
), f"Expected all names to be unique, got {nodes}"
def test_set_node_name_succeeds_when_no_name_collisions(self):
def func(x, y, z):
return x + y + z
x = torch.randn(3)
y = torch.randn(3)
z = torch.randn(3)
gm, _ = torch._dynamo.export(func)(x, y, z)
torch._dynamo.reset()
# Run `set_node_name` and verify that the names are correct.
new_name = "some_tensor"
nodes = list(gm.graph.nodes)
name_to_node = {node.name: node for node in nodes}
pass_utils.set_node_name(nodes[1], new_name, name_to_node)
assert nodes[1].name == new_name, f"Expected {new_name}, got {nodes[0].name}"
assert len({node.name for node in nodes}) == len(
nodes
), f"Expected all names to be unique, got {nodes}"
def test_onnx_dynamo_export_raises_when_model_contains_unsupported_fx_nodes(self):
@torch.library.custom_op(
"mylibrary::foo_op", device_types="cpu", mutates_args=()
)
def foo_op(x: torch.Tensor) -> torch.Tensor:
return x + 1
@torch.library.custom_op(
"mylibrary::bar_op", device_types="cpu", mutates_args=()
)
def bar_op(x: torch.Tensor) -> torch.Tensor:
return x + 2
@foo_op.register_fake
def _(x):
return torch.empty_like(x)
@bar_op.register_fake
def _(x):
return torch.empty_like(x)
def func(x, y, z):
return foo_op(x) + bar_op(y) + z
x = torch.randn(3)
y = torch.randn(3)
z = torch.randn(3)
with self.assertRaises(torch.onnx.OnnxExporterError) as ctx:
torch.onnx.dynamo_export(func, x, y, z)
inner_exception = ctx.exception.__cause__
self.assertRegex(
str(inner_exception),
r"Unsupported FX nodes.*mylibrary\.foo_op.*mylibrary\.bar_op",
)
torch._dynamo.reset()
@common_utils.instantiate_parametrized_tests
class TestModularizePass(common_utils.TestCase):
@pytorch_test_common.xfail(
error_message="'torch_nn_modules_activation_GELU_used_gelu_1' not found",
reason="optimizer",
)
@common_utils.parametrize(
"is_exported_program",
[
common_utils.subtest(
True,
name="exported_program",
),
common_utils.subtest(
False,
name="nn_module",
),
],
)
def test_modularize_pass_succeeds_when_submodule_output_is_unused(
self, is_exported_program
):
# This is an ill-formed model, but exporter must not crash.
# It is illegal for submodule to have zero output. For modularization pass it can happen
# when the submodule output is unused, so no inner node is connected to any outer
# nodes.
# However, this also means the entire submodule should be erased by DCE. Hence
# it should never occur.
#
# Minified repro from Background_Matting. https://github.com/pytorch/benchmark/issues/1768
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.unused_relu = torch.nn.ReLU()
self.used_gelu = torch.nn.GELU()
def forward(self, x, y):
result = self.used_gelu(x + y)
unused_relu_result = self.unused_relu(x)
return result
if is_exported_program:
model = torch.export.export(
TestModule(), args=(torch.randn(3), torch.randn(3))
)
else:
model = TestModule()
onnx_program = torch.onnx.dynamo_export(model, torch.randn(3), torch.randn(3))
model_proto = onnx_program.model_proto
function_proto_names = [function.name for function in model_proto.functions]
self.assertIn(
"torch_nn_modules_activation_GELU_used_gelu_1", function_proto_names
)
self.assertFalse(any("ReLU" in name for name in function_proto_names))
@pytorch_test_common.xfail(
error_message="'torch_nn_modules_activation_ReLU_relu_1' not found",
reason="optimizer",
)
@common_utils.parametrize(
"is_exported_program",
[
common_utils.subtest(
True,
name="exported_program",
),
common_utils.subtest(
False,
name="nn_module",
),
],
)
def test_modularize_pass_succeeds_when_a_submodule_is_called_multiple_times(
self, is_exported_program
):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.relu = torch.nn.ReLU()
def forward(self, x, y):
out = x + y
out = self.relu(out)
out = out + x
out = self.relu(out)
return out
if is_exported_program:
model = torch.export.export(
TestModule(), args=(torch.randn(3), torch.randn(3))
)
else:
model = TestModule()
onnx_program = torch.onnx.dynamo_export(model, torch.randn(3), torch.randn(3))
model_proto = onnx_program.model_proto
function_proto_names = [function.name for function in model_proto.functions]
self.assertIn("torch_nn_modules_activation_ReLU_relu_1", function_proto_names)
self.assertIn("torch_nn_modules_activation_ReLU_relu_2", function_proto_names)
@pytorch_test_common.xfail(
error_message="'torch_nn_modules_activation_ReLU_inner_module_relu_1' not found",
reason="optimizer",
)
@common_utils.parametrize(
"is_exported_program",
[
common_utils.subtest(
True,
name="exported_program",
),
common_utils.subtest(
False,
name="nn_module",
),
],
)
def test_modularize_pass_succeeds_when_a_submodule_is_called_from_multiple_layers(
self, is_exported_program
):
# Minified repro from basic_gnn_edgecnn.
class InnerModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.relu = torch.nn.ReLU()
def forward(self, x):
return self.relu(x)
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.inner_module = InnerModule()
def forward(self, x, y):
out = x + y
out = self.inner_module(out)
out = out + x
out = self.inner_module.relu(out)
return out
if is_exported_program:
model = torch.export.export(
TestModule(), args=(torch.randn(3), torch.randn(3))
)
else:
model = TestModule()
onnx_program = torch.onnx.dynamo_export(model, torch.randn(3), torch.randn(3))
model_proto = onnx_program.model_proto
function_proto_names = [function.name for function in model_proto.functions]
self.assertIn(
"torch_nn_modules_activation_ReLU_inner_module_relu_1", function_proto_names
)
self.assertIn(
"torch_nn_modules_activation_ReLU_inner_module_relu_2", function_proto_names
)
# local module qualified name is unstable in test environment depending on different test
# invocation methods.
self.assertTrue(
any("InnerModule_inner_module_1" in name for name in function_proto_names)
)
if __name__ == "__main__":
common_utils.run_tests()