| #include <Python.h> |
| |
| #include "torch/csrc/autograd/function.h" |
| |
| #include "torch/csrc/autograd/functions/special.h" |
| #include "torch/csrc/autograd/variable.h" |
| #include "torch/csrc/jit/ir.h" |
| |
| #include <ATen/ATen.h> |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <memory> |
| #include <stdexcept> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| namespace torch { namespace autograd { |
| |
| thread_local uint64_t Function::next_sequence_nr_ = 0; |
| |
| auto Function::name() -> std::string { |
| return std::string(typeid(*this).name()); |
| } |
| |
| // This function is analogous to make_trace which operates on PythonOp, but this |
| // function instead works for C++ implemented autograd Functions, which don't |
| // actually have any backing Python class. We still need to trace them! |
| variable_list Function::traced_apply(variable_list inputs) { |
| using namespace torch::jit; |
| // Traceable Functions are completely transparent to the JIT. |
| if (is_traceable()) { |
| return apply(inputs); |
| } |
| auto state = tracer::getTracingState(inputs); |
| auto state_lock = state->lock(); |
| |
| // Insert a CppOp in the trace. |
| auto& graph = state->graph; |
| std::vector<VariableFlags> var_flags; |
| for(auto & input: inputs) { |
| var_flags.push_back(VariableFlags::of(input)); |
| } |
| auto* this_node = graph->createCppOp(get_shared_ptr(), std::move(var_flags)); |
| this_node->setSourceLocation(std::make_shared<SourceLocation>( |
| jit::tracer::getPythonInterpreterStackTrace() |
| )); |
| for (auto& input: inputs) { |
| this_node->addInput(tracer::getValueTrace(state, input)); |
| } |
| graph->appendNode(this_node); |
| |
| // Finally apply this Function. |
| state_lock.unlock(); |
| variable_list outputs = apply(inputs); |
| state_lock.lock(); |
| |
| // Set up output traces. |
| int num_outputs = outputs.size(); |
| for (int i = 0; i < num_outputs; ++i) { |
| auto& output = outputs[i]; |
| auto sel = this_node->addOutput(); |
| // TODO: At the moment, C++ does not track shared storage. It |
| // should. Update this when that happens. |
| if (output.defined()) { |
| sel->inferTypeFrom(output.data()); |
| tracer::setValueTrace(state, output, sel); |
| } |
| } |
| |
| if (!passes_state_transparently()) { |
| auto this_eval = dynamic_cast<Eval*>(this); |
| // Evals consume handle from a context edge of forward node |
| if (this_eval) |
| this_node->addInput(this_eval->forward_ctx_select); |
| // There's no point in wrapping functions in Eval, if we know they already are |
| // part of another Eval subgraph. This is both a small optimization, and |
| // it allows us to not implement saved_variables() in many functions. |
| const bool should_trace_backward = tracing_state_->in_eval_subgraph; |
| if (!should_trace_backward) { |
| auto saved_vars = saved_variables(); |
| if (!saved_vars) |
| throw std::runtime_error("saved_variables() needed but not implemented in " + name()); |
| variable_list bw_subgraph_inputs(inputs); |
| for (auto& saved_var : *saved_vars) { |
| bw_subgraph_inputs.emplace_back(saved_var.unpack(get_shared_ptr())); |
| } |
| tracer::nontraceableBackwardSubgraph(bw_subgraph_inputs, outputs); |
| } |
| bool has_backwards_eval = !should_trace_backward || this_eval; |
| if (has_backwards_eval) |
| set_up_context_edge(this_node, inputs, outputs); |
| } |
| return outputs; |
| } |
| |
| void Function::set_up_context_edge( |
| jit::Node* this_node, |
| const variable_list& inputs, |
| const variable_list& outputs) { |
| auto ctx_select = this_node->addOutput(); |
| ctx_select->setType(std::make_shared<jit::HandleType>()); |
| auto backward_eval = Eval::getBackwardEval(inputs, outputs); |
| if (backward_eval) |
| backward_eval->forward_ctx_select = ctx_select; |
| } |
| |
| }} // namespace torch::autograd |