|  | import argparse | 
|  | import os | 
|  | import pathlib | 
|  | import re | 
|  | from collections import Counter, defaultdict, namedtuple | 
|  | from typing import Dict, List, Optional, Sequence, Set, Union | 
|  |  | 
|  | import yaml | 
|  |  | 
|  | import torchgen.api.dispatcher as dispatcher | 
|  | import torchgen.dest as dest | 
|  | from torchgen.api.types import DispatcherSignature | 
|  | from torchgen.code_template import CodeTemplate | 
|  | from torchgen.context import native_function_manager | 
|  | from torchgen.gen import get_grouped_native_functions, parse_native_yaml | 
|  | from torchgen.model import ( | 
|  | BackendIndex, | 
|  | BackendMetadata, | 
|  | DispatchKey, | 
|  | NativeFunction, | 
|  | NativeFunctionsGroup, | 
|  | OperatorName, | 
|  | ) | 
|  | from torchgen.selective_build.selector import SelectiveBuilder | 
|  | from torchgen.utils import concatMap, context, FileManager, NamespaceHelper, Target | 
|  | from torchgen.yaml_utils import YamlLoader | 
|  |  | 
|  |  | 
|  | # Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key. | 
|  | # Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping) | 
|  | ParsedExternalYaml = namedtuple( | 
|  | "ParsedExternalYaml", | 
|  | ["backend_key", "autograd_key", "class_name", "cpp_namespace", "backend_indices"], | 
|  | ) | 
|  |  | 
|  |  | 
|  | def parse_backend_yaml( | 
|  | backend_yaml_path: str, | 
|  | grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], | 
|  | backend_indices: Dict[DispatchKey, BackendIndex], | 
|  | ) -> ParsedExternalYaml: | 
|  | native_functions_map: Dict[OperatorName, NativeFunction] = { | 
|  | f.func.name: f | 
|  | for f in concatMap( | 
|  | lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), | 
|  | grouped_native_functions, | 
|  | ) | 
|  | } | 
|  |  | 
|  | with open(backend_yaml_path) as f: | 
|  | yaml_values = yaml.load(f, Loader=YamlLoader) | 
|  | assert isinstance(yaml_values, dict) | 
|  |  | 
|  | valid_keys = [ | 
|  | "backend", | 
|  | "class_name", | 
|  | "cpp_namespace", | 
|  | "extra_headers", | 
|  | "supported", | 
|  | "autograd", | 
|  | "full_codegen", | 
|  | "non_native", | 
|  | "ir_gen", | 
|  | "symint", | 
|  | ] | 
|  |  | 
|  | backend = yaml_values.pop("backend", None) | 
|  | assert backend is not None, 'You must provide a value for "backend"' | 
|  |  | 
|  | class_name = yaml_values.pop("class_name", None) | 
|  |  | 
|  | cpp_namespace = yaml_values.pop("cpp_namespace", None) | 
|  | assert cpp_namespace is not None, 'You must provide a value for "cpp_namespace"' | 
|  |  | 
|  | # Mostly just defaulting to false to stick with LazyTensor convention. | 
|  | use_out_as_primary = yaml_values.pop("use_out_as_primary", False) | 
|  | assert isinstance( | 
|  | use_out_as_primary, bool | 
|  | ), f"You must provide either True or False for use_out_as_primary. Provided: {use_out_as_primary}" | 
|  |  | 
|  | use_device_guard = yaml_values.pop("device_guard", False) | 
|  | assert isinstance( | 
|  | use_device_guard, bool | 
|  | ), f"You must provide either True or False for device_guard. Provided: {use_device_guard}" | 
|  |  | 
|  | supported = yaml_values.pop("supported", []) | 
|  | if supported is None: | 
|  | supported = []  # Allow an empty list of supported ops | 
|  | assert isinstance( | 
|  | supported, list | 
|  | ), f'expected "supported" to be a list, but got: {supported} (of type {type(supported)})' | 
|  |  | 
|  | symint = yaml_values.pop("symint", []) | 
|  | if symint is None: | 
|  | symint = []  # Allow an empty list of symint ops | 
|  | assert isinstance( | 
|  | symint, list | 
|  | ), f'expected "symint" to be a list, but got: {supported} (of type {type(supported)})' | 
|  | symint_set = set(symint) | 
|  |  | 
|  | supported_autograd = yaml_values.pop("autograd", []) | 
|  | assert isinstance( | 
|  | supported_autograd, list | 
|  | ), f'expected "autograd" to be a list, but got: {supported_autograd}' | 
|  |  | 
|  | # full_codegen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py | 
|  | full_codegen = yaml_values.pop("full_codegen", []) | 
|  | supported.extend(full_codegen) | 
|  |  | 
|  | # non_native is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py | 
|  | non_native = yaml_values.pop("non_native", {}) | 
|  |  | 
|  | # ir_gen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py | 
|  | _ = yaml_values.pop("ir_gen", {}) | 
|  |  | 
|  | assert ( | 
|  | len(yaml_values.keys()) == 0 | 
|  | ), f'{backend_yaml_path} contains unexpected keys: {", ".join(yaml_values.keys())}. \ | 
|  | Only the following keys are supported: {", ".join(valid_keys)}' | 
|  |  | 
|  | def create_backend_index( | 
|  | backend_ops: List[str], | 
|  | symint_ops: Set[str], | 
|  | dispatch_key: DispatchKey, | 
|  | *, | 
|  | use_out_as_primary: bool, | 
|  | use_device_guard: bool, | 
|  | ) -> BackendIndex: | 
|  | metadata: Dict[OperatorName, BackendMetadata] = {} | 
|  | for op in backend_ops: | 
|  | op_name = OperatorName.parse(op) | 
|  | assert ( | 
|  | op_name in native_functions_map | 
|  | ), f"Found an invalid operator name: {op_name}" | 
|  | # See Note [External Backends Follow Dispatcher API] | 
|  | kernel_name = dispatcher.name(native_functions_map[op_name].func) | 
|  | if op in symint_ops: | 
|  | kernel_name += "_symint" | 
|  | # TODO: allow structured external backends later. | 
|  | m = BackendMetadata( | 
|  | kernel=kernel_name, structured=False, cpp_namespace=cpp_namespace | 
|  | ) | 
|  | metadata[op_name] = m | 
|  | return BackendIndex( | 
|  | dispatch_key=dispatch_key, | 
|  | use_out_as_primary=use_out_as_primary, | 
|  | external=True, | 
|  | device_guard=use_device_guard, | 
|  | index=metadata, | 
|  | ) | 
|  |  | 
|  | backend_key: Optional[DispatchKey] = None | 
|  | if len(supported) > 0: | 
|  | with context( | 
|  | lambda: f'The provided value for "backend" must be a valid DispatchKey, but got {backend}.' | 
|  | ): | 
|  | backend_key = DispatchKey.parse(backend) | 
|  |  | 
|  | backend_idx = create_backend_index( | 
|  | supported, | 
|  | symint_set, | 
|  | backend_key, | 
|  | use_out_as_primary=use_out_as_primary, | 
|  | use_device_guard=use_device_guard, | 
|  | ) | 
|  | assert backend_key not in backend_indices | 
|  | backend_indices[backend_key] = backend_idx | 
|  |  | 
|  | autograd_key: Optional[DispatchKey] = None | 
|  | if len(supported_autograd) > 0: | 
|  | with context( | 
|  | lambda: f'The "autograd" key was specified, which indicates that you would like to override \ | 
|  | the behavior of autograd for some operators on your backend. However "Autograd{backend}" is not a valid DispatchKey.' | 
|  | ): | 
|  | autograd_key = DispatchKey.parse(f"Autograd{backend}") | 
|  |  | 
|  | autograd_idx = create_backend_index( | 
|  | supported_autograd, | 
|  | symint_set, | 
|  | autograd_key, | 
|  | use_out_as_primary=use_out_as_primary, | 
|  | use_device_guard=use_device_guard, | 
|  | ) | 
|  | assert autograd_key not in backend_indices | 
|  | backend_indices[autograd_key] = autograd_idx | 
|  |  | 
|  | for g in grouped_native_functions: | 
|  | if isinstance(g, NativeFunction): | 
|  | forward_kernels = ( | 
|  | [] | 
|  | if backend_key is None | 
|  | else [ | 
|  | m | 
|  | for m in [backend_indices[backend_key].get_kernel(g)] | 
|  | if m is not None | 
|  | ] | 
|  | ) | 
|  | backward_kernels = ( | 
|  | [] | 
|  | if autograd_key is None | 
|  | else [ | 
|  | m | 
|  | for m in [backend_indices[autograd_key].get_kernel(g)] | 
|  | if m is not None | 
|  | ] | 
|  | ) | 
|  | else: | 
|  | forward_kernels = ( | 
|  | [] | 
|  | if backend_key is None | 
|  | else [ | 
|  | m | 
|  | for m in [ | 
|  | backend_indices[backend_key].get_kernel(f) | 
|  | for f in g.functions() | 
|  | ] | 
|  | if m is not None | 
|  | ] | 
|  | ) | 
|  | backward_kernels = ( | 
|  | [] | 
|  | if autograd_key is None | 
|  | else [ | 
|  | m | 
|  | for m in [ | 
|  | backend_indices[autograd_key].get_kernel(f) | 
|  | for f in g.functions() | 
|  | ] | 
|  | if m is not None | 
|  | ] | 
|  | ) | 
|  |  | 
|  | forward_kernels = [f for f in forward_kernels if f is not None] | 
|  | backward_kernels = [f for f in backward_kernels if f is not None] | 
|  | assert ( | 
|  | len(forward_kernels) == 0 or len(backward_kernels) == 0 | 
|  | ), f'Currently, all variants of an op must either be registered to a backend key, or to a backend\'s \ | 
|  | autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! \ | 
|  | {forward_kernels[0].kernel} is listed under "supported", but {backward_kernels[0].kernel} is listed under "autograd".' | 
|  |  | 
|  | return ParsedExternalYaml( | 
|  | backend_key, autograd_key, class_name, cpp_namespace, backend_indices | 
|  | ) | 
|  |  | 
|  |  | 
|  | def error_on_missing_kernels( | 
|  | native_functions: Sequence[NativeFunction], | 
|  | backend_indices: Dict[DispatchKey, BackendIndex], | 
|  | backend_key: DispatchKey, | 
|  | autograd_key: Optional[DispatchKey], | 
|  | class_name: str, | 
|  | kernel_defn_file_path: str, | 
|  | full_codegen: Optional[List[OperatorName]] = None, | 
|  | ) -> None: | 
|  | try: | 
|  | with open(kernel_defn_file_path) as f: | 
|  | backend_defns = f.read() | 
|  | except OSError as e: | 
|  | raise AssertionError( | 
|  | f"Unable to read from the specified impl_path file: {kernel_defn_file_path}" | 
|  | ) from e | 
|  |  | 
|  | if full_codegen is None: | 
|  | full_codegen = [] | 
|  |  | 
|  | indices = [backend_indices[backend_key].index] + ( | 
|  | [] if autograd_key is None else [backend_indices[autograd_key].index] | 
|  | ) | 
|  | # Quick mapping from each OperatorName used by the external backend | 
|  | # to its backend kernel name | 
|  | expected_backend_op_names: Dict[OperatorName, str] = dict( | 
|  | list( | 
|  | concatMap( | 
|  | lambda index: [ | 
|  | (op_name, metadata.kernel) for op_name, metadata in index.items() | 
|  | ], | 
|  | indices, | 
|  | ) | 
|  | ) | 
|  | ) | 
|  | expected_backend_native_funcs: List[NativeFunction] = [ | 
|  | f | 
|  | for f in native_functions | 
|  | if f.func.name in expected_backend_op_names.keys() | 
|  | and f.func.name not in full_codegen | 
|  | ] | 
|  | expected_backend_kernel_name_counts: Dict[str, List[NativeFunction]] = defaultdict( | 
|  | list | 
|  | ) | 
|  | for native_f in expected_backend_native_funcs: | 
|  | expected_backend_kernel_name_counts[ | 
|  | expected_backend_op_names[native_f.func.name] | 
|  | ].append(native_f) | 
|  |  | 
|  | # This just looks for lines containing "foo(", and assumes that the kernel foo has been implemented. | 
|  | # It might cause false negatives (we won't catch all cases), but that's ok - if we catch a missing kernel | 
|  | # here, then we get a nicer error message. If we miss it, you get a linker error. | 
|  | kernel_defn_regex = rf"(.*){class_name}::\s*([\w\d]*)\(" | 
|  | actual_backend_kernel_name_counts = Counter( | 
|  | # A bit unwieldy (this could probably be moved into regex), | 
|  | # but we don't want to include kernel names that come from function calls, | 
|  | # like "return torch_xla::XLANativeFunctions::empty_strided_symint(...)". | 
|  | # Easy check is to ignore any lines with colons before the class name. | 
|  | [ | 
|  | y | 
|  | for (x, y) in re.findall(kernel_defn_regex, backend_defns) | 
|  | if not x.endswith(":") | 
|  | ] | 
|  | ) | 
|  |  | 
|  | missing_kernels_err_msg = "" | 
|  | for expected_name, funcs in expected_backend_kernel_name_counts.items(): | 
|  | expected_overload_count = len(funcs) | 
|  | actual_overload_count = actual_backend_kernel_name_counts[expected_name] | 
|  | if expected_overload_count != actual_overload_count: | 
|  |  | 
|  | def create_decl(f: NativeFunction) -> str: | 
|  | with native_function_manager(f): | 
|  | return DispatcherSignature.from_schema(f.func).decl() | 
|  |  | 
|  | expected_schemas_str = "\n".join([create_decl(f) for f in funcs]) | 
|  | missing_kernels_err_msg += f""" | 
|  | {class_name} is missing a kernel definition for {expected_name}. We found {actual_overload_count} kernel(s) with that name, | 
|  | but expected {expected_overload_count} kernel(s). The expected function schemas for the missing operator are: | 
|  | {expected_schemas_str} | 
|  |  | 
|  | """ | 
|  | assert missing_kernels_err_msg == "", missing_kernels_err_msg | 
|  |  | 
|  |  | 
|  | def main() -> None: | 
|  | parser = argparse.ArgumentParser(description="Generate backend stub files") | 
|  | parser.add_argument( | 
|  | "-s", | 
|  | "--source-yaml", | 
|  | "--source_yaml", | 
|  | help="path to source yaml file containing operator external definitions", | 
|  | ) | 
|  | parser.add_argument("-o", "--output-dir", "--output_dir", help="output directory") | 
|  | parser.add_argument( | 
|  | "--dry-run", "--dry_run", type=bool, default=False, help="output directory" | 
|  | ) | 
|  | parser.add_argument( | 
|  | "--impl-path", | 
|  | "--impl_path", | 
|  | type=str, | 
|  | default=None, | 
|  | help="path to the source C++ file containing kernel definitions", | 
|  | ) | 
|  | options = parser.parse_args() | 
|  |  | 
|  | run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path) | 
|  |  | 
|  |  | 
|  | def gen_dispatchkey_nativefunc_headers( | 
|  | fm: FileManager, | 
|  | class_name: str, | 
|  | cpp_namespace: str, | 
|  | backend_indices: Dict[DispatchKey, BackendIndex], | 
|  | grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], | 
|  | backend_dispatch_key: DispatchKey, | 
|  | autograd_dispatch_key: Optional[DispatchKey], | 
|  | backend_name: str = "", | 
|  | ) -> None: | 
|  | assert class_name is not None | 
|  | generated_comment = ( | 
|  | "Autogenerated file by gen_backend_stubs.py. Do not edit directly!" | 
|  | ) | 
|  |  | 
|  | # Convert to a set first to remove duplicate kernel names. | 
|  | # Backends are allowed to repeat kernel names; only generate the declaration once! | 
|  | # Sort for deterministic output. | 
|  | backend_declarations = sorted( | 
|  | set( | 
|  | concatMap( | 
|  | lambda f: dest.compute_native_function_declaration( | 
|  | f, backend_indices[backend_dispatch_key] | 
|  | ), | 
|  | grouped_native_functions, | 
|  | ) | 
|  | ) | 
|  | ) | 
|  | autograd_declarations = sorted( | 
|  | set( | 
|  | concatMap( | 
|  | lambda f: [] | 
|  | if autograd_dispatch_key is None | 
|  | else dest.compute_native_function_declaration( | 
|  | f, backend_indices[autograd_dispatch_key] | 
|  | ), | 
|  | grouped_native_functions, | 
|  | ) | 
|  | ) | 
|  | ) | 
|  |  | 
|  | ns_helper = NamespaceHelper(cpp_namespace) | 
|  | fm.write_with_template( | 
|  | f"{backend_dispatch_key}NativeFunctions.h", | 
|  | "DispatchKeyNativeFunctions.h", | 
|  | lambda: { | 
|  | "generated_comment": generated_comment, | 
|  | "namespace_prologue": ns_helper.prologue, | 
|  | "class_name": class_name, | 
|  | "namespace_epilogue": ns_helper.epilogue, | 
|  | "dispatch_declarations": backend_declarations + autograd_declarations, | 
|  | "BackendName": backend_name, | 
|  | "DispatchKey": backend_dispatch_key, | 
|  | }, | 
|  | ) | 
|  |  | 
|  |  | 
|  | def gen_dispatcher_registrations( | 
|  | fm: FileManager, | 
|  | output_dir: str, | 
|  | class_name: str, | 
|  | backend_indices: Dict[DispatchKey, BackendIndex], | 
|  | grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], | 
|  | backend_dispatch_key: DispatchKey, | 
|  | dispatch_key: DispatchKey, | 
|  | selector: "SelectiveBuilder", | 
|  | # build_in_tree is true for lazy TS backend and affects include paths, not used for external backends | 
|  | build_in_tree: bool = False, | 
|  | per_operator_headers: bool = False, | 
|  | backend_name: str = "", | 
|  | eager_registration: bool = True, | 
|  | ) -> None: | 
|  | headers = [ | 
|  | f"{output_dir}/{backend_dispatch_key}NativeFunctions.h", | 
|  | ] | 
|  | if build_in_tree: | 
|  | external_backend_headers_str = "\n".join(f"#include <{h}>" for h in headers) | 
|  | else: | 
|  | external_backend_headers_str = "\n".join(f'#include "{h}"' for h in headers) | 
|  |  | 
|  | assert class_name is not None | 
|  | backend_index = backend_indices[dispatch_key] | 
|  |  | 
|  | dispatch_registrations_body = list( | 
|  | concatMap( | 
|  | dest.RegisterDispatchKey( | 
|  | backend_index, | 
|  | Target.REGISTRATION, | 
|  | selector, | 
|  | rocm=False, | 
|  | symint=True, | 
|  | class_method_name=f"{class_name}", | 
|  | skip_dispatcher_op_registration=False, | 
|  | ), | 
|  | grouped_native_functions, | 
|  | ) | 
|  | ) | 
|  | newline = "\n" | 
|  | ns_helper = NamespaceHelper(namespace_str="at") | 
|  | deferred_dispatch_registrations = "" | 
|  | static_init_dispatch_registrations = "" | 
|  | if eager_registration: | 
|  | static_template = CodeTemplate( | 
|  | """\ | 
|  | TORCH_LIBRARY_IMPL(aten, $dispatch_key, m) { | 
|  | $dispatch_registrations_body | 
|  | };""" | 
|  | ) | 
|  | static_init_dispatch_registrations = static_template.substitute( | 
|  | dispatch_key=dispatch_key, | 
|  | dispatch_registrations_body=dispatch_registrations_body, | 
|  | ) | 
|  | else: | 
|  | deferred_template = CodeTemplate( | 
|  | """\ | 
|  | TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions(); | 
|  | TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions() { | 
|  | static auto m = MAKE_TORCH_LIBRARY_IMPL(aten, $dispatch_key); | 
|  | $dispatch_registrations_body | 
|  | }""" | 
|  | ) | 
|  | deferred_dispatch_registrations = deferred_template.substitute( | 
|  | backend_name=backend_name, | 
|  | dispatch_key=dispatch_key, | 
|  | dispatch_registrations_body=dispatch_registrations_body, | 
|  | ) | 
|  |  | 
|  | fm.write_with_template( | 
|  | f"Register{dispatch_key}.cpp", | 
|  | "RegisterDispatchKey.cpp", | 
|  | lambda: { | 
|  | "extra_cuda_headers": "", | 
|  | "external_backend_headers": external_backend_headers_str, | 
|  | "ops_headers": "#include <ATen/Functions.h>" | 
|  | if not per_operator_headers | 
|  | else "", | 
|  | "DispatchKey": dispatch_key, | 
|  | "dispatch_namespace": dispatch_key.lower(), | 
|  | "dispatch_headers": dest.gen_registration_headers( | 
|  | backend_index, per_operator_headers=per_operator_headers, rocm=False | 
|  | ), | 
|  | "dispatch_definitions": fm.substitute_with_template( | 
|  | "RegisterDispatchDefinitions.ini", | 
|  | lambda: { | 
|  | "ns_prologue": ns_helper.prologue, | 
|  | "ns_epilogue": ns_helper.epilogue, | 
|  | "static_init_dispatch_registrations": static_init_dispatch_registrations, | 
|  | "deferred_dispatch_registrations": deferred_dispatch_registrations, | 
|  | "dispatch_helpers": dest.gen_registration_helpers(backend_index), | 
|  | "dispatch_namespace": dispatch_key.lower(), | 
|  | "dispatch_namespaced_definitions": "", | 
|  | "dispatch_anonymous_definitions": list( | 
|  | concatMap( | 
|  | dest.RegisterDispatchKey( | 
|  | backend_index, | 
|  | Target.ANONYMOUS_DEFINITION, | 
|  | selector, | 
|  | rocm=False, | 
|  | symint=True, | 
|  | class_method_name=f"{class_name}", | 
|  | skip_dispatcher_op_registration=False, | 
|  | ), | 
|  | grouped_native_functions, | 
|  | ) | 
|  | ), | 
|  | }, | 
|  | ).split(newline), | 
|  | }, | 
|  | ) | 
|  |  | 
|  |  | 
|  | def run( | 
|  | source_yaml: str, output_dir: str, dry_run: bool, impl_path: Optional[str] = None | 
|  | ) -> None: | 
|  | # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py | 
|  | pytorch_root = pathlib.Path(__file__).parent.parent.absolute() | 
|  | template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates") | 
|  |  | 
|  | def make_file_manager(install_dir: str) -> FileManager: | 
|  | return FileManager( | 
|  | install_dir=install_dir, template_dir=template_dir, dry_run=dry_run | 
|  | ) | 
|  |  | 
|  | fm = make_file_manager(output_dir) | 
|  |  | 
|  | native_yaml_path = os.path.join( | 
|  | pytorch_root, "aten/src/ATen/native/native_functions.yaml" | 
|  | ) | 
|  | tags_yaml_path = os.path.join(pytorch_root, "aten/src/ATen/native/tags.yaml") | 
|  | parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path) | 
|  | native_functions, backend_indices = ( | 
|  | parsed_yaml.native_functions, | 
|  | parsed_yaml.backend_indices, | 
|  | ) | 
|  | grouped_native_functions = get_grouped_native_functions(native_functions) | 
|  | parsed_backend_yaml = parse_backend_yaml( | 
|  | source_yaml, grouped_native_functions, backend_indices | 
|  | ) | 
|  | backend_key = parsed_backend_yaml.backend_key | 
|  | autograd_key = parsed_backend_yaml.autograd_key | 
|  | cpp_namespace = parsed_backend_yaml.cpp_namespace | 
|  | class_name = parsed_backend_yaml.class_name | 
|  | backend_indices = parsed_backend_yaml.backend_indices | 
|  |  | 
|  | selector = SelectiveBuilder.get_nop_selector() | 
|  |  | 
|  | if backend_key is None: | 
|  | # This could be useful if a backend wants to quickly set up a noop yaml file but doesn't have any kernels ready yet. | 
|  | return | 
|  |  | 
|  | if class_name is None: | 
|  | # class_name is an optional argument to backend yaml file. | 
|  | # if specified it allows an external backend to override | 
|  | # the name of the class that all generated kernel definitions live under. | 
|  | # if not specified, its value is given as native_function_class_name. | 
|  | class_name = backend_indices[backend_key].native_function_class_name() | 
|  | assert class_name is not None | 
|  |  | 
|  | if impl_path is not None: | 
|  | error_on_missing_kernels( | 
|  | native_functions, | 
|  | backend_indices, | 
|  | backend_key, | 
|  | autograd_key, | 
|  | class_name, | 
|  | impl_path, | 
|  | ) | 
|  |  | 
|  | gen_dispatchkey_nativefunc_headers( | 
|  | fm, | 
|  | class_name, | 
|  | cpp_namespace, | 
|  | backend_indices, | 
|  | grouped_native_functions, | 
|  | backend_key, | 
|  | autograd_key, | 
|  | ) | 
|  |  | 
|  | for dispatch_key in ( | 
|  | [backend_key] if autograd_key is None else [backend_key, autograd_key] | 
|  | ): | 
|  | gen_dispatcher_registrations( | 
|  | fm, | 
|  | output_dir, | 
|  | class_name, | 
|  | backend_indices, | 
|  | grouped_native_functions, | 
|  | backend_key, | 
|  | dispatch_key, | 
|  | selector, | 
|  | ) | 
|  |  | 
|  |  | 
|  | if __name__ == "__main__": | 
|  | main() |