blob: e5381ac6ab7d3ef439fbe9da6e42eb92b6a600d5 [file] [log] [blame]
# @package optimizer
# Module caffe2.python.optimizer
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
class Regularizer(object):
def __init__(self):
self.apply_after_optimizer = False
'''
Adds regularization to train_net for given parameter. Its factor ahead of
regularization is given when initialization.
The param should be a BlobReference.
'''
def __call__(self, net, param_init_net, param, grad=None):
assert isinstance(param, core.BlobReference)
return self._run(net, param_init_net, param, grad)
def _run(self, net, param_init_net, param, grad):
raise Exception("Not Impelemented")
class L1Norm(Regularizer):
def __init__(self, reg_lambda):
super(L1Norm, self).__init__()
assert reg_lambda >= 0,\
'factor ahead of regularization should be 0 or positive'
self.reg_lambda = reg_lambda
def _run(self, net, param_init_net, param, grad=None):
output_blob = net.NextScopedBlob(param + '_l1_regularization')
net.LpNorm([param], [output_blob], p=1)
net.Scale([output_blob], [output_blob], scale=self.reg_lambda)
return output_blob
class L2Norm(Regularizer):
def __init__(self, reg_lambda):
super(L2Norm, self).__init__()
assert reg_lambda >= 0,\
'factor ahead of regularization should be 0 or positive'
self.reg_lambda = reg_lambda
def _run(self, net, param_init_net, param, grad=None):
output_blob = net.NextScopedBlob(param + '_l2_regularization')
net.LpNorm([param], [output_blob], p=2)
net.Scale([output_blob], [output_blob], scale=self.reg_lambda)
return output_blob
class MaxNorm(Regularizer):
def __init__(self, norm=1.0):
super(MaxNorm, self).__init__()
self.norm = norm
self.apply_after_optimizer = True
def _run(self, net, param_init_net, param, grad):
assert self.norm > 0, 'norm should be bigger than 0.'
if isinstance(grad, core.GradientSlice):
net.SparseNormalize(
[param, grad.indices, grad.values],
[param],
use_max_norm=True,
norm=self.norm,
)
else:
raise NotImplementedError(
"MaxNorm is not supported for dense parameters"
)
class ConstantNorm(Regularizer):
def __init__(self, norm=1.0):
super(ConstantNorm, self).__init__()
self.norm = norm
self.apply_after_optimizer = True
def _run(self, net, param_init_net, param, grad):
assert self.norm > 0, 'norm should be bigger than 0.'
if isinstance(grad, core.GradientSlice):
net.SparseNormalize(
[param, grad.indices, grad.values],
[param],
use_max_norm=False,
norm=self.norm,
)
else:
raise NotImplementedError(
"ConstantNorm is not supported for dense parameters"
)