| from typing import Iterator, Optional, Sequence, List, TypeVar, Generic, Sized |
| from ... import Tensor |
| |
| T_co = TypeVar('T_co', covariant=True) |
| class Sampler(Generic[T_co]): |
| def __init__(self, data_source: Sized) -> None: ... |
| def __iter__(self) -> Iterator[T_co]: ... |
| def __len__(self) -> int: ... |
| |
| class SequentialSampler(Sampler[int]): |
| data_source: Sized |
| pass |
| |
| class RandomSampler(Sampler[int]): |
| data_source: Sized |
| replacement: bool |
| num_samples: int |
| |
| def __init__(self, data_source: Sized, replacement: bool=..., num_samples: Optional[int]=...) -> None: ... |
| |
| class SubsetRandomSampler(Sampler[int]): |
| indices: Sequence[int] |
| |
| def __init__(self, indices: Sequence[int]) -> None: ... |
| |
| class WeightedRandomSampler(Sampler[int]): |
| weights: Tensor |
| num_samples: int |
| replacement: bool |
| |
| def __init__(self, weights: Sequence[float], num_samples: int, replacement: bool=...) -> None: ... |
| |
| class BatchSampler(Sampler[List[int]]): |
| sampler: Sampler[int] |
| batch_size: int |
| drop_last: bool |
| |
| def __init__(self, sampler: Sampler[int], batch_size: int, drop_last: bool) -> None: ... |