blob: 35bcc41ef5caa3339b50ea28a614dd3dbe8e21b4 [file] [log] [blame]
from typing import Iterator, Optional, Sequence, List, TypeVar, Generic, Sized
from ... import Tensor
T_co = TypeVar('T_co', covariant=True)
class Sampler(Generic[T_co]):
def __init__(self, data_source: Sized) -> None: ...
def __iter__(self) -> Iterator[T_co]: ...
def __len__(self) -> int: ...
class SequentialSampler(Sampler[int]):
data_source: Sized
pass
class RandomSampler(Sampler[int]):
data_source: Sized
replacement: bool
num_samples: int
def __init__(self, data_source: Sized, replacement: bool=..., num_samples: Optional[int]=...) -> None: ...
class SubsetRandomSampler(Sampler[int]):
indices: Sequence[int]
def __init__(self, indices: Sequence[int]) -> None: ...
class WeightedRandomSampler(Sampler[int]):
weights: Tensor
num_samples: int
replacement: bool
def __init__(self, weights: Sequence[float], num_samples: int, replacement: bool=...) -> None: ...
class BatchSampler(Sampler[List[int]]):
sampler: Sampler[int]
batch_size: int
drop_last: bool
def __init__(self, sampler: Sampler[int], batch_size: int, drop_last: bool) -> None: ...