| from typing import TypeVar, Generic, Iterable, Sequence, List, Optional, Tuple |
| from ... import Tensor, Generator |
| |
| T_co = TypeVar('T_co', covariant=True) |
| T = TypeVar('T') |
| class Dataset(Generic[T_co]): |
| def __getitem__(self, index: int) -> T_co: ... |
| def __len__(self) -> int: ... |
| def __add__(self, other: T_co) -> 'ConcatDataset[T_co]': ... |
| |
| class IterableDataset(Dataset[T_co]): |
| def __iter__(self) -> Iterable[T_co]: ... |
| |
| |
| class TensorDataset(Dataset[Tuple[Tensor, ...]]): |
| tensors: List[Tensor] |
| |
| def __init__(self, *tensors: Tensor) -> None: ... |
| |
| class ConcatDataset(Dataset[T_co]): |
| datasets: List[Dataset[T_co]] |
| cumulative_sizes: List[int] |
| |
| def __init__(self, datasets: Iterable[Dataset]) -> None: ... |
| |
| class Subset(Dataset[T_co]): |
| dataset: Dataset[T_co] |
| indices: Sequence[int] |
| |
| def __init__(self, dataset: Dataset[T_co], indices: Sequence[int]) -> None: ... |
| |
| def random_split(dataset: Dataset[T], lengths: Sequence[int], generator: Optional[Generator]) -> List[Subset[T]]: ... |