| #ifndef THC_GENERIC_FILE |
| #define THC_GENERIC_FILE "generic/SpatialDilatedMaxPooling.cu" |
| #else |
| |
| #include "../common.h" |
| |
| void THNN_(SpatialDilatedMaxPooling_updateOutput)( |
| THCState *state, |
| THCTensor *input, |
| THCTensor *output, |
| THCIndexTensor *indices, |
| int kW, int kH, |
| int dW, int dH, |
| int padW, int padH, |
| int dilationW, int dilationH, |
| bool ceil_mode) |
| { |
| |
| THCUNN_assertSameGPU_generic(state, 3, input, output, indices); |
| THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch) tensor expected"); |
| |
| long nInputCols, nInputRows, nInputPlane, batchSize; |
| long nOutputCols, nOutputRows; |
| |
| if (input->nDimension == 3) { |
| nInputCols = input->size[2]; |
| nInputRows = input->size[1]; |
| nInputPlane = input->size[0]; |
| batchSize = 1; |
| } |
| else |
| { |
| nInputCols = input->size[3]; |
| nInputRows = input->size[2]; |
| nInputPlane = input->size[1]; |
| batchSize = input->size[0]; |
| } |
| |
| THArgCheck(nInputCols >= kW - padW && nInputRows >= kH - padH, 2, "input image smaller than kernel size"); |
| THArgCheck(kW/2 >= padW && kH/2 >= padH, 2, "pad should be smaller than half of kernel size"); |
| |
| if(ceil_mode) { |
| nOutputCols = ceil(float(nInputCols - (dilationW * (kW - 1) + 1) + 2*padW) / float(dW)) + 1; |
| nOutputRows = ceil(float(nInputRows - (dilationH * (kH - 1) + 1) + 2*padH) / float(dH)) + 1; |
| } |
| else { |
| nOutputCols = floor(float(nInputCols - (dilationW * (kW - 1) + 1) + 2*padW) / float(dW)) + 1; |
| nOutputRows = floor(float(nInputRows - (dilationH * (kH - 1) + 1) + 2*padH) / float(dH)) + 1; |
| } |
| |
| if (nOutputCols < 1 || nOutputRows < 1) |
| THError("Given input size: (%dx%dx%d). Calculated output size: (%dx%dx%d). Output size is too small", |
| nInputPlane,nInputRows,nInputCols,nInputPlane,nOutputRows,nOutputCols); |
| |
| if (padW || padH) |
| { |
| // ensure that the last pooling starts inside the image |
| if ((nOutputRows - 1)*dH >= nInputRows + padH) |
| --nOutputRows; |
| if ((nOutputCols - 1)*dW >= nInputCols + padW) |
| --nOutputCols; |
| } |
| |
| input = THCTensor_(newContiguous)(state, input); |
| real* input_data = THCTensor_(data)(state, input); |
| |
| THCTensor_(resize4d)(state, output, batchSize, nInputPlane, nOutputRows, nOutputCols); |
| THCUNN_resizeAs_indices(state, indices, output); |
| |
| THCIndex_t* indices_data = THCIndexTensor_(data)(state, indices); |
| real* output_data = THCTensor_(data)(state, output); |
| |
| int count = THCTensor_(nElement)(state, output); |
| |
| MaxPoolForward<real, accreal> <<< GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>> |
| (count, input_data, |
| batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols, |
| kH, kW, dH, dW, padH, padW, dilationH, dilationW, output_data, indices_data); |
| THCudaCheck(cudaGetLastError()); |
| |
| if(input->nDimension == 3) |
| THCTensor_(resize3d)(state, output, nInputPlane, nOutputRows, nOutputCols); |
| |
| THCTensor_(free)(state, input); |
| } |
| |
| void THNN_(SpatialDilatedMaxPooling_updateGradInput)( |
| THCState *state, |
| THCTensor *input, |
| THCTensor *gradOutput, |
| THCTensor *gradInput, |
| THCIndexTensor *indices, |
| int kW, int kH, |
| int dW, int dH, |
| int padW, int padH, |
| int dilationW, int dilationH, |
| bool ceil_mode) |
| { |
| THCUNN_assertSameGPU_generic(state, 4, input, gradOutput, indices, gradInput); |
| |
| input = THCTensor_(newContiguous)(state, input); |
| gradOutput = THCTensor_(newContiguous)(state, gradOutput); |
| |
| long nInputCols, nInputRows, nInputPlane, batchSize; |
| long nOutputCols, nOutputRows; |
| |
| if (input->nDimension == 3) { |
| nInputCols = input->size[2]; |
| nInputRows = input->size[1]; |
| nInputPlane = input->size[0]; |
| batchSize = 1; |
| } |
| else |
| { |
| nInputCols = input->size[3]; |
| nInputRows = input->size[2]; |
| nInputPlane = input->size[1]; |
| batchSize = input->size[0]; |
| } |
| |
| if(ceil_mode) { |
| nOutputCols = ceil(float(nInputCols - (dilationW * (kW - 1) + 1) + 2*padW) / float(dW)) + 1; |
| nOutputRows = ceil(float(nInputRows - (dilationH * (kH - 1) + 1) + 2*padH) / float(dH)) + 1; |
| } |
| else { |
| nOutputCols = floor(float(nInputCols - (dilationW * (kW - 1) + 1) + 2*padW) / float(dW)) + 1; |
| nOutputRows = floor(float(nInputRows - (dilationH * (kH - 1) + 1) + 2*padH) / float(dH)) + 1; |
| } |
| |
| if (nOutputCols < 1 || nOutputRows < 1) |
| THError("Given input size: (%dx%dx%d). Calculated output size: (%dx%dx%d). Output size is too small", |
| nInputPlane,nInputRows,nInputCols,nInputPlane,nOutputRows,nOutputCols); |
| |
| gradOutput = THCTensor_(newContiguous)(state, gradOutput); |
| THCTensor_(resizeAs)(state, gradInput, input); |
| |
| int count = THCTensor_(nElement)(state, input); |
| |
| MaxPoolBackward<real, accreal> <<< GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>> |
| (count, |
| THCTensor_(data)(state, gradOutput), |
| THCIndexTensor_(data)(state, indices), |
| batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols, |
| kH, kW, dH, dW, padH, padW, dilationH, dilationW, |
| THCTensor_(data)(state, gradInput)); |
| THCudaCheck(cudaGetLastError()); |
| |
| THCTensor_(free)(state, gradOutput); |
| |
| // clean |
| THCTensor_(free)(state, input); |
| THCTensor_(free)(state, gradOutput); |
| } |
| |
| #endif |