blob: d4049d6b270b26787b7e914a3714e7a5720e1214 [file] [log] [blame]
#include <catch.hpp>
#include <torch/nn/module.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/modules/rnn.h>
#include <torch/tensor.h>
#include <torch/utils.h>
#include <test/cpp/api/util.h>
using namespace torch::nn;
using namespace torch::test;
using Catch::StartsWith;
struct AGIUnit : torch::nn::Module {};
namespace test {
struct AGIUnit : torch::nn::Module {};
struct AGIUnit2 : torch::nn::Module {
AGIUnit2() : torch::nn::Module("Foo") {}
};
} // namespace test
TEST_CASE("module/training-mode") {
torch::manual_seed(0);
Linear module(3, 4);
REQUIRE(module->is_training());
SECTION("Enable eval mode") {
module->eval();
REQUIRE(!module->is_training());
}
SECTION("Enable train mode") {
module->train();
REQUIRE(module->is_training());
}
}
TEST_CASE("module/zero-grad") {
torch::manual_seed(0);
Linear module(3, 4);
auto weight = torch::ones({8, 3}, torch::requires_grad());
auto loss = module->forward(weight).sum();
loss.backward();
for (auto& parameter : module->parameters()) {
auto grad = parameter->grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() != 0);
}
module->zero_grad();
for (auto& parameter : module->parameters()) {
auto grad = parameter->grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() == 0);
}
}
TEST_CASE("module/zero-grad-with-undefined") {
struct TestModule : torch::nn::Module {
TestModule() {
x = register_parameter("x", torch::ones(5, at::requires_grad()));
y = register_parameter("y", torch::ones(5, at::requires_grad()));
}
torch::Tensor x, y;
};
TestModule module;
auto z = module.x * 2;
z.sum().backward();
REQUIRE(module.x.grad().defined());
REQUIRE(!module.y.grad().defined());
module.zero_grad();
REQUIRE(module.x.grad().defined());
REQUIRE(!module.y.grad().defined());
REQUIRE(module.x.grad().sum().toCFloat() == 0);
}
TEST_CASE("module/name") {
// CHECK instead of REQUIRE because demangling may fail.
AGIUnit agi;
// Call it twice just to make sure there are no bugs in the lazy
// initialization semantics.
CHECK(agi.name() == "AGIUnit");
CHECK(agi.name() == "AGIUnit");
SECTION("correctly demangled") {
CHECK(test::AGIUnit().name() == "test::AGIUnit");
CHECK(test::AGIUnit2().name() == "Foo");
}
}
TEST_CASE("module/as") {
Linear module(3, 4);
REQUIRE(module->as<Linear>() == module.get());
REQUIRE(module->as<LinearImpl>() == module.get());
REQUIRE(module->as<Module>() == module.get());
REQUIRE(module->as<AGIUnit>() == nullptr);
std::shared_ptr<Module> raw = module.ptr();
REQUIRE(raw->as<Linear>() == module.get());
REQUIRE(raw->as<LinearImpl>() == module.get());
REQUIRE(raw->as<Module>() == module.get());
REQUIRE(raw->as<AGIUnit>() == nullptr);
Module& raw_ref = *raw.get();
REQUIRE(raw_ref.as<Linear>() == module.get());
REQUIRE(raw_ref.as<LinearImpl>() == module.get());
REQUIRE(raw_ref.as<Module>() == module.get());
REQUIRE(raw_ref.as<AGIUnit>() == nullptr);
if (auto* linear = raw_ref.as<Linear>()) {
REQUIRE(linear->weight.ndimension() == 2);
}
AGIUnit unit;
REQUIRE(unit.as<Linear>() == nullptr);
REQUIRE(unit.as<LinearImpl>() == nullptr);
REQUIRE(unit.as<AGIUnit>() == &unit);
}
TEST_CASE("module/conversions", "[multi-cuda]") {
torch::manual_seed(0);
Linear module(128, 64);
SECTION("starts as float on CPU") {
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device() == torch::Device(torch::kCPU));
REQUIRE(parameter->dtype() == torch::kFloat32);
}
}
SECTION("to(CUDA)") {
module->to({torch::kCUDA, 0});
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device().type() == torch::Device::Type::CUDA);
REQUIRE(parameter->device().index() == 0);
}
module->to({at::kCUDA, 1});
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device().type() == torch::Device::Type::CUDA);
REQUIRE(parameter->device().index() == 1);
}
}
SECTION("to(CPU)") {
module->to(torch::Device(torch::kCPU));
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device().type() == torch::Device::Type::CPU);
}
}
SECTION("to(Int32)") {
module->to(torch::kInt32);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->dtype() == torch::kInt32);
}
}
SECTION("to(Float64)") {
module->to(torch::kFloat64);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->dtype() == torch::kFloat64);
}
}
SECTION("to(CUDA, Byte)") {
module->to(torch::Device(torch::kCUDA, 1), torch::kUInt8);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->device().type() == torch::Device::Type::CUDA);
REQUIRE(parameter->device().index() == 1);
}
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->dtype() == torch::kUInt8);
}
}
}
TEST_CASE("module/clone") {
torch::manual_seed(0);
SECTION(
"a module that does not override clone() throws when clone() is called") {
struct UnCloneable : Module {};
UnCloneable module;
REQUIRE_THROWS_WITH(
module.clone(), StartsWith("clone() has not been implemented"));
}
SECTION(
"a module that overrides clone() does not throw when clone() is called ") {
struct Cloneable : Module {
std::shared_ptr<Module> clone(
at::optional<torch::Device> device = at::nullopt) const override {
return nullptr;
}
};
Cloneable module;
REQUIRE_NOTHROW(module.clone());
}
SECTION("Cloning creates distinct parameters") {
struct TestModule : public Cloneable<TestModule> {
TestModule() {
reset();
}
void reset() override {
l1 = register_module("l1", Linear(10, 3));
l2 = register_module("l2", Linear(3, 5));
l3 = register_module("l3", Linear(5, 100));
buffer = register_buffer("buf", torch::ones({2, 2}));
}
Linear l1{nullptr}, l2{nullptr}, l3{nullptr};
torch::Tensor buffer;
};
auto module = std::make_shared<TestModule>();
torch::NoGradGuard no_grad;
auto module2 = module->clone();
auto params1 = module->parameters();
auto params2 = module2->parameters();
REQUIRE(params1.size() == 6);
REQUIRE(params2.size() == 6);
for (auto& param : params1) {
REQUIRE(!pointer_equal(param.value, params2[param.key]));
REQUIRE(param->allclose(params2[param.key]));
param->add_(2);
}
for (auto& param : params1) {
REQUIRE(!param->allclose(params2[param.key]));
}
auto buffers1 = module->buffers();
auto buffers2 = module2->buffers();
REQUIRE(buffers1.size() == 1);
REQUIRE(buffers2.size() == 1);
for (auto& buffer : buffers1) {
REQUIRE(!pointer_equal(buffer.value, buffers2[buffer.key]));
REQUIRE(buffer->allclose(buffers2[buffer.key]));
buffer->add_(2);
}
for (auto& buffer : buffers1) {
REQUIRE(!buffer->allclose(buffers2[buffer.key]));
}
}
SECTION("Cloning preserves external references") {
struct TestModule : public Cloneable<TestModule> {
TestModule() {
reset();
}
void reset() override {
weight = register_parameter("weight", torch::ones({4, 4}));
}
torch::Tensor weight;
};
auto module = std::make_shared<TestModule>();
{
torch::NoGradGuard no_grad;
module->weight += 1;
}
REQUIRE(pointer_equal(module->weight, module->parameters()["weight"]));
REQUIRE(module->weight.allclose(module->parameters()["weight"]));
auto module2 = std::dynamic_pointer_cast<TestModule>(
std::shared_ptr<Module>(module->clone()));
REQUIRE(!pointer_equal(module2->weight, module->weight));
REQUIRE(pointer_equal(module2->weight, module2->parameters()["weight"]));
REQUIRE(module2->weight.allclose(module2->parameters()["weight"]));
REQUIRE(module2->weight.allclose(module->weight));
REQUIRE(!pointer_equal(module2->weight, module->parameters()["weight"]));
}
SECTION("Cloning copies the values of variables of submodules") {
struct TestModule : public Cloneable<TestModule> {
TestModule() {
reset();
}
void reset() override {
weight = register_parameter("weight", torch::ones({4, 4}));
}
torch::Tensor weight;
int value = 0;
};
struct NestedModule : public Cloneable<NestedModule> {
NestedModule() {
reset();
}
void reset() override {
module = register_module("module", std::make_shared<TestModule>());
}
std::shared_ptr<TestModule> module;
};
auto a = std::make_shared<NestedModule>();
{
torch::NoGradGuard no_grad;
a->module->weight += 1;
a->module->value = 123;
}
auto b = std::dynamic_pointer_cast<NestedModule>(a->clone());
REQUIRE(!pointer_equal(b->module->weight, a->module->weight));
REQUIRE(
pointer_equal(b->module->weight, b->module->parameters()["weight"]));
REQUIRE(b->module->parameters()["weight"].allclose(a->module->weight));
REQUIRE(b->module->weight.allclose(a->module->weight));
REQUIRE(b->module->value == a->module->value);
}
}
TEST_CASE("module/clone-to-device", "[cuda]") {
struct TestModule : public Cloneable<TestModule> {
TestModule() {
reset();
}
void reset() override {
l1 = register_module("l1", Linear(10, 3));
l2 = register_module("l2", Linear(3, 5));
l3 = register_module("l3", Linear(5, 100));
buffer = register_buffer("buf", torch::ones({2, 2}));
}
Linear l1{nullptr}, l2{nullptr}, l3{nullptr};
torch::Tensor buffer;
};
SECTION("Cloning preserves the device of parameters/buffers") {
TestModule m;
torch::Device device(torch::kCUDA, 0);
m.to(device);
auto clone = m.clone();
for (const auto& parameter : clone->parameters()) {
REQUIRE(parameter->device().type() == device.type());
REQUIRE(parameter->device().index() == device.index());
}
for (const auto& buffer : clone->buffers()) {
REQUIRE(buffer->device().type() == device.type());
REQUIRE(buffer->device().index() == device.index());
}
}
SECTION(
"Cloning to a particular device places all parameters/buffers there") {
TestModule m;
torch::Device device(torch::kCUDA, 1);
// everything is on CPU here
auto clone = m.clone(device);
for (const auto& parameter : clone->parameters()) {
REQUIRE(parameter->device().type() == device.type());
REQUIRE(parameter->device().index() == device.index());
}
for (const auto& buffer : clone->buffers()) {
REQUIRE(buffer->device().type() == device.type());
REQUIRE(buffer->device().index() == device.index());
}
}
}
TEST_CASE("module/parameters") {
torch::manual_seed(0);
struct TestModule : Module {
TestModule() {
a = register_parameter("a", torch::zeros({2, 2}));
b = register_parameter("b", torch::ones({2, 2}));
c = register_parameter("c", torch::ones({2, 2}) * 2);
}
torch::Tensor a, b, c;
};
TestModule module;
SECTION("has correct number of parameters") {
REQUIRE(module.parameters().size() == 3);
}
SECTION("contains parameters with the correct name") {
auto parameters = module.parameters();
REQUIRE(parameters.contains("a"));
REQUIRE(parameters.contains("b"));
REQUIRE(parameters.contains("c"));
}
}
TEST_CASE("module/buffers") {
torch::manual_seed(0);
struct TestModule : Module {
TestModule() {
a = register_buffer("a", torch::zeros({2, 2}));
b = register_buffer("b", torch::ones({2, 2}));
c = register_buffer("c", torch::ones({2, 2}) * 2);
}
torch::Tensor a, b, c;
};
TestModule module;
SECTION("has correct number of buffers") {
REQUIRE(module.buffers().size() == 3);
}
SECTION("contains buffers with the correct name") {
auto buffers = module.buffers();
REQUIRE(buffers.contains("a"));
REQUIRE(buffers.contains("b"));
REQUIRE(buffers.contains("c"));
}
}
TEST_CASE("module/default-constructor") {
struct AImpl : torch::nn::Module {
AImpl() : x_(123) {}
AImpl(int x) : x_(x) {}
int x_;
};
TORCH_MODULE(A);
{
A a;
REQUIRE(a);
REQUIRE(!a.is_empty());
REQUIRE(a->x_ == 123);
}
{
A a(5);
REQUIRE(a);
REQUIRE(!a.is_empty());
REQUIRE(a->x_ == 5);
}
{
A a = nullptr;
REQUIRE(!a);
REQUIRE(a.is_empty());
REQUIRE_THROWS_WITH(a->x_, StartsWith("Accessing empty ModuleHolder"));
}
}