| #include <torch/csrc/autograd/variable.h> |
| |
| #include <torch/csrc/autograd/edge.h> |
| #include <torch/csrc/autograd/engine.h> |
| #include <torch/csrc/autograd/function.h> |
| #include <torch/csrc/autograd/functions/accumulate_grad.h> |
| #include <torch/csrc/autograd/functions/tensor.h> |
| #include <torch/csrc/autograd/generated/Functions.h> |
| #include <torch/csrc/autograd/generated/VariableType.h> |
| |
| #include <ATen/ATen.h> |
| #include <c10/util/Exception.h> |
| |
| #include <list> |
| #include <memory> |
| #include <mutex> |
| #include <stdexcept> |
| #include <string> |
| #include <vector> |
| #include <typeinfo> |
| |
| namespace torch { |
| namespace autograd { |
| Variable::AutogradMeta::AutogradMeta(at::TensorImpl* self_impl, bool requires_grad, Edge gradient_edge) { |
| grad_fn_ = std::move(gradient_edge.function); |
| requires_grad_ = false; |
| is_view_ = false; |
| output_nr_ = gradient_edge.input_nr; |
| |
| // set_requires_grad also checks error conditions. |
| set_requires_grad(requires_grad, self_impl); |
| TORCH_CHECK( |
| !grad_fn_ || !requires_grad_, |
| "requires_grad should be false if grad_fn is set"); |
| } |
| |
| std::shared_ptr<Function> Variable::grad_accumulator() const { |
| auto autograd_meta = get_autograd_meta(); |
| if (autograd_meta->grad_fn_) { |
| throw std::logic_error( |
| "grad_accumulator() should be only called on leaf Variables"); |
| } |
| if (!autograd_meta->requires_grad_) { |
| return nullptr; |
| } |
| |
| std::lock_guard<std::mutex> lock(autograd_meta->mutex_); |
| |
| auto result = autograd_meta->grad_accumulator_.lock(); |
| if (result) |
| return result; |
| |
| c10::raw::intrusive_ptr::incref(unsafeGetTensorImpl()); |
| auto intrusive_from_this = c10::intrusive_ptr<at::TensorImpl>::reclaim(unsafeGetTensorImpl()); |
| result = std::make_shared<AccumulateGrad>(Variable(std::move(intrusive_from_this))); |
| autograd_meta->grad_accumulator_ = result; |
| return result; |
| } |
| |
| void Variable::detach_() { |
| if (is_view()) { |
| AT_ERROR("Can't detach views in-place. Use detach() instead"); |
| } |
| auto autograd_meta = get_autograd_meta(); |
| autograd_meta->set_requires_grad(false, unsafeGetTensorImpl()); |
| autograd_meta->grad_fn_.reset(); |
| autograd_meta->output_nr_ = 0; |
| } |
| |
| void Variable::backward( |
| c10::optional<Tensor> gradient, |
| bool keep_graph, |
| bool create_graph) const { |
| auto autograd_meta = get_autograd_meta(); |
| std::vector<Edge> edges; |
| edges.emplace_back(autograd_meta->grad_fn_, autograd_meta->output_nr_); |
| |
| std::vector<Variable> inputs; |
| if (!gradient.has_value()) { |
| gradient = at::ones_like(*this); |
| } |
| inputs.push_back(std::move(as_variable_ref(*gradient))); |
| Engine::get_default_engine().execute(edges, inputs, keep_graph, create_graph); |
| } |
| |
| void Variable::set_data(const at::Tensor &new_data) { |
| // `var.set_data(new_data)` shallow-copies all non-autograd TensorImpl fields |
| // from `new_data` to `var`. It requires that `new_data` has the same derived |
| // type of TensorImpl as `var`. |
| TORCH_CHECK( |
| _has_same_tensorimpl_type(*this, new_data), |
| "Attempted to call `variable.set_data(tensor)`, but `variable` and `tensor` have different types of TensorImpl."); |
| |
| // Resets gradient accumulator if metadata is out of date |
| Variable::AutogradMeta* autograd_meta = get_autograd_meta(); |
| std::lock_guard<std::mutex> lock(autograd_meta->mutex_); |
| auto prior_accumulator = autograd_meta->grad_accumulator_.lock(); |
| if (prior_accumulator) { |
| const auto prior_device = prior_accumulator->input_metadata(0).device(); |
| const auto new_device = new_data.device(); |
| |
| if (new_data.type() != type() || prior_device != new_device) { |
| autograd_meta->grad_accumulator_.reset(); |
| } |
| } |
| |
| // Version counter is not shared when we replace a `Variable`'s tensor data |
| // by calling `set_data(...)`. The original version of the `Variable` is always preserved. |
| // See NOTE [ Version Counter Sharing ] for details. |
| // |
| // `var.set_data(new_data)` always ignores `var`'s `allow_tensor_metadata_change_`, because |
| // users need this API as an escape hatch for changing a tensor's metadata regardless of its |
| // `allow_tensor_metadata_change_` value, and the users are responsible for ensuring this is |
| // the behavior they want. |
| get()->shallow_copy_from(new_data.getIntrusivePtr()); |
| } |
| |
| Variable::DifferentiableViewMeta::DifferentiableViewMeta(at::TensorImpl* self_impl, Variable base, Edge gradient_edge) |
| : Variable::AutogradMeta(self_impl, false, std::move(gradient_edge)) { |
| base_ = std::move(base); |
| TORCH_CHECK(base_.defined(), "base is undefined"); |
| if (base_.is_view()) { |
| base_ = base_.base(); |
| } |
| is_view_ = true; |
| self_impl->set_version_counter(base_.version_counter()); |
| attr_version = self_impl->version_counter().current_version(); |
| } |
| |
| Variable::DifferentiableViewMeta::~DifferentiableViewMeta() { |
| base_.reset(); |
| } |
| |
| const std::shared_ptr<Function>& Variable::grad_fn() const { |
| if (is_view()) { |
| auto diff_view_meta = static_cast<Variable::DifferentiableViewMeta*>(get_autograd_meta()); |
| std::lock_guard<std::mutex> lock(diff_view_meta->mutex_); |
| if (!diff_view_meta->grad_fn_ && !diff_view_meta->base_.requires_grad()) { |
| return diff_view_meta->grad_fn_; |
| } |
| auto current_version = this->current_version(); |
| if (diff_view_meta->attr_version != current_version) { |
| AT_ASSERT(diff_view_meta->output_nr_ == 0); |
| auto fn = std::make_shared<generated::AsStridedBackward>(); |
| fn->self_geometry = at::TensorGeometry(diff_view_meta->base_); |
| fn->size = sizes().vec(); |
| fn->stride = strides().vec(); |
| fn->storage_offset = storage_offset(); |
| fn->set_next_edges(collect_next_edges(diff_view_meta->base_)); |
| fn->add_input_metadata( |
| diff_view_meta->base_.type() |
| , sizes() // Note: sizes(), not base_.sizes(), is intentional |
| , diff_view_meta->base_.device()); |
| diff_view_meta->grad_fn_ = std::move(fn); |
| diff_view_meta->attr_version = current_version; |
| } |
| return diff_view_meta->grad_fn_; |
| } else { |
| return get_autograd_meta()->grad_fn_; |
| } |
| } |
| |
| void Variable::rebase_history(Edge gradient_edge) { |
| AT_ASSERT(gradient_edge.function != nullptr); |
| if (is_view()) { |
| auto diff_view_meta = static_cast<Variable::DifferentiableViewMeta*>(get_autograd_meta()); |
| AT_ASSERT(gradient_edge.input_nr == 0); |
| AT_ASSERT(gradient_edge.function); |
| TORCH_CHECK( |
| gradient_edge.function->num_inputs() == 1, |
| "Functions which modify views in-place must return a single Variable"); |
| diff_view_meta->output_nr_ = gradient_edge.input_nr; |
| auto copy_slices = std::make_shared<CopySlices>( |
| diff_view_meta->base_, at::TensorGeometry(*this), std::move(gradient_edge.function)); |
| diff_view_meta->base_.set_gradient_edge({std::move(copy_slices), 0}); |
| grad_fn(); // trigger an update to the view's grad_fn |
| } else { |
| set_gradient_edge(std::move(gradient_edge)); |
| } |
| } |
| |
| }} // namespace torch::autograd |