|  | import torch | 
|  | from torch import Tensor | 
|  |  | 
|  | from .optimizer import Optimizer | 
|  | from typing import List, Optional | 
|  |  | 
|  |  | 
|  | class Adadelta(Optimizer): | 
|  | r"""Implements Adadelta algorithm. | 
|  |  | 
|  | .. math:: | 
|  | \begin{aligned} | 
|  | &\rule{110mm}{0.4pt}                                                                 \\ | 
|  | &\textbf{input}      : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, | 
|  | \: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)}, | 
|  | \: \lambda \text{ (weight decay)}                                                \\ | 
|  | &\textbf{initialize} :  v_0  \leftarrow 0 \: \text{ (square avg)}, | 
|  | \: u_0 \leftarrow 0 \: \text{ (accumulate variables)}                     \\[-1.ex] | 
|  | &\rule{110mm}{0.4pt}                                                                 \\ | 
|  | &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\ | 
|  | &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\ | 
|  | &\hspace{5mm}if \: \lambda \neq 0                                                    \\ | 
|  | &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\ | 
|  | &\hspace{5mm} v_t      \leftarrow v_{t-1} \rho + g^2_t (1 - \rho)                    \\ | 
|  | &\hspace{5mm}\Delta x_t    \leftarrow   \frac{\sqrt{u_{t-1} + | 
|  | \epsilon }}{ \sqrt{v_t + \epsilon}  }g_t \hspace{21mm}                           \\ | 
|  | &\hspace{5mm} u_t  \leftarrow   u_{t-1}  \rho + | 
|  | \Delta x^2_t  (1 - \rho)                                                        \\ | 
|  | &\hspace{5mm}\theta_t      \leftarrow   \theta_{t-1} - \gamma  \Delta x_t            \\ | 
|  | &\rule{110mm}{0.4pt}                                                          \\[-1.ex] | 
|  | &\bf{return} \:  \theta_t                                                     \\[-1.ex] | 
|  | &\rule{110mm}{0.4pt}                                                          \\[-1.ex] | 
|  | \end{aligned} | 
|  |  | 
|  | For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_. | 
|  |  | 
|  | Args: | 
|  | params (iterable): iterable of parameters to optimize or dicts defining | 
|  | parameter groups | 
|  | rho (float, optional): coefficient used for computing a running average | 
|  | of squared gradients (default: 0.9) | 
|  | eps (float, optional): term added to the denominator to improve | 
|  | numerical stability (default: 1e-6) | 
|  | lr (float, optional): coefficient that scale delta before it is applied | 
|  | to the parameters (default: 1.0) | 
|  | weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | 
|  | foreach (bool, optional): whether foreach implementation of optimizer is used (default: None) | 
|  | maximize (bool, optional): maximize the params based on the objective, instead of | 
|  | minimizing (default: False) | 
|  |  | 
|  | .. _ADADELTA\: An Adaptive Learning Rate Method: | 
|  | https://arxiv.org/abs/1212.5701 | 
|  | """ | 
|  |  | 
|  | def __init__(self, params, lr=1.0, rho=0.9, eps=1e-6, weight_decay=0, | 
|  | foreach: Optional[bool] = None, *, maximize: bool = False): | 
|  | if not 0.0 <= lr: | 
|  | raise ValueError("Invalid learning rate: {}".format(lr)) | 
|  | if not 0.0 <= rho <= 1.0: | 
|  | raise ValueError("Invalid rho value: {}".format(rho)) | 
|  | if not 0.0 <= eps: | 
|  | raise ValueError("Invalid epsilon value: {}".format(eps)) | 
|  | if not 0.0 <= weight_decay: | 
|  | raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | 
|  |  | 
|  | defaults = dict(lr=lr, rho=rho, eps=eps, weight_decay=weight_decay, | 
|  | maximize=maximize, foreach=foreach) | 
|  | super(Adadelta, self).__init__(params, defaults) | 
|  |  | 
|  | def __setstate__(self, state): | 
|  | super().__setstate__(state) | 
|  | for group in self.param_groups: | 
|  | group.setdefault('foreach', None) | 
|  | group.setdefault('maximize', False) | 
|  |  | 
|  | @torch.no_grad() | 
|  | def step(self, closure=None): | 
|  | """Performs a single optimization step. | 
|  |  | 
|  | Args: | 
|  | closure (callable, optional): A closure that reevaluates the model | 
|  | and returns the loss. | 
|  | """ | 
|  | loss = None | 
|  | if closure is not None: | 
|  | with torch.enable_grad(): | 
|  | loss = closure() | 
|  |  | 
|  | for group in self.param_groups: | 
|  | params_with_grad = [] | 
|  | grads = [] | 
|  | square_avgs = [] | 
|  | acc_deltas = [] | 
|  | lr, rho, eps, weight_decay, foreach, maximize = (group['lr'], | 
|  | group['rho'], | 
|  | group['eps'], | 
|  | group['weight_decay'], | 
|  | group['foreach'], | 
|  | group['maximize']) | 
|  |  | 
|  | for p in group['params']: | 
|  | if p.grad is None: | 
|  | continue | 
|  | params_with_grad.append(p) | 
|  | if p.grad.is_sparse: | 
|  | raise RuntimeError('Adadelta does not support sparse gradients') | 
|  | grads.append(p.grad) | 
|  |  | 
|  | state = self.state[p] | 
|  |  | 
|  | # Lazy state initialization | 
|  | if len(state) == 0: | 
|  | state['step'] = 0 | 
|  | state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) | 
|  | state['acc_delta'] = torch.zeros_like(p, memory_format=torch.preserve_format) | 
|  |  | 
|  | square_avgs.append(state['square_avg']) | 
|  | acc_deltas.append(state['acc_delta']) | 
|  |  | 
|  | state['step'] += 1 | 
|  |  | 
|  | adadelta(params_with_grad, | 
|  | grads, | 
|  | square_avgs, | 
|  | acc_deltas, | 
|  | lr=lr, | 
|  | rho=rho, | 
|  | eps=eps, | 
|  | weight_decay=weight_decay, | 
|  | foreach=foreach, | 
|  | maximize=maximize) | 
|  |  | 
|  | return loss | 
|  |  | 
|  |  | 
|  | def adadelta(params: List[Tensor], | 
|  | grads: List[Tensor], | 
|  | square_avgs: List[Tensor], | 
|  | acc_deltas: List[Tensor], | 
|  | # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 | 
|  | # setting this as kwarg for now as functional API is compiled by torch/distributed/optim | 
|  | foreach: bool = None, | 
|  | *, | 
|  | lr: float, | 
|  | rho: float, | 
|  | eps: float, | 
|  | weight_decay: float, | 
|  | maximize: bool): | 
|  | r"""Functional API that performs Adadelta algorithm computation. | 
|  |  | 
|  | See :class:`~torch.optim.Adadelta` for details. | 
|  | """ | 
|  |  | 
|  | if foreach is None: | 
|  | # Placeholder for more complex foreach logic to be added when value is not set | 
|  | foreach = False | 
|  |  | 
|  | if foreach and torch.jit.is_scripting(): | 
|  | raise RuntimeError('torch.jit.script not supported with foreach optimizers') | 
|  |  | 
|  | if foreach and not torch.jit.is_scripting(): | 
|  | func = _multi_tensor_adadelta | 
|  | else: | 
|  | func = _single_tensor_adadelta | 
|  |  | 
|  | func(params, | 
|  | grads, | 
|  | square_avgs, | 
|  | acc_deltas, | 
|  | lr=lr, | 
|  | rho=rho, | 
|  | eps=eps, | 
|  | weight_decay=weight_decay, | 
|  | maximize=maximize) | 
|  |  | 
|  |  | 
|  | def _single_tensor_adadelta(params: List[Tensor], | 
|  | grads: List[Tensor], | 
|  | square_avgs: List[Tensor], | 
|  | acc_deltas: List[Tensor], | 
|  | *, | 
|  | lr: float, | 
|  | rho: float, | 
|  | eps: float, | 
|  | weight_decay: float, | 
|  | maximize: bool): | 
|  |  | 
|  | for (param, grad, square_avg, acc_delta) in zip(params, grads, square_avgs, acc_deltas): | 
|  | grad = grad if not maximize else -grad | 
|  |  | 
|  | if weight_decay != 0: | 
|  | grad = grad.add(param, alpha=weight_decay) | 
|  |  | 
|  | if torch.is_complex(param): | 
|  | square_avg = torch.view_as_real(square_avg) | 
|  | acc_delta = torch.view_as_real(acc_delta) | 
|  | grad = torch.view_as_real(grad) | 
|  |  | 
|  | square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho) | 
|  | std = square_avg.add(eps).sqrt_() | 
|  | delta = acc_delta.add(eps).sqrt_().div_(std).mul_(grad) | 
|  | acc_delta.mul_(rho).addcmul_(delta, delta, value=1 - rho) | 
|  | if torch.is_complex(param): | 
|  | delta = torch.view_as_complex(delta) | 
|  | param.add_(delta, alpha=-lr) | 
|  |  | 
|  |  | 
|  | def _multi_tensor_adadelta(params: List[Tensor], | 
|  | grads: List[Tensor], | 
|  | square_avgs: List[Tensor], | 
|  | acc_deltas: List[Tensor], | 
|  | *, | 
|  | lr: float, | 
|  | weight_decay: float, | 
|  | rho: float, | 
|  | eps: float, | 
|  | maximize: bool): | 
|  |  | 
|  | if len(params) == 0: | 
|  | return | 
|  |  | 
|  | if maximize: | 
|  | grads = torch._foreach_neg(grads) | 
|  |  | 
|  | if weight_decay != 0: | 
|  | torch._foreach_add_(grads, params, alpha=weight_decay) | 
|  |  | 
|  | torch._foreach_mul_(square_avgs, rho) | 
|  | torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - rho) | 
|  |  | 
|  | std = torch._foreach_add(square_avgs, eps) | 
|  | torch._foreach_sqrt_(std) | 
|  |  | 
|  | deltas = torch._foreach_add(acc_deltas, eps) | 
|  | torch._foreach_sqrt_(deltas) | 
|  | torch._foreach_div_(deltas, std) | 
|  | torch._foreach_mul_(deltas, grads) | 
|  |  | 
|  | torch._foreach_add_(params, deltas, alpha=-lr) | 
|  |  | 
|  | torch._foreach_mul_(acc_deltas, rho) | 
|  | torch._foreach_addcmul_(acc_deltas, deltas, deltas, value=1 - rho) |