| import math |
| from functools import partial |
| from typing import Dict, Optional |
| |
| import torch |
| from torch.fx.experimental.symbolic_shapes import free_symbols |
| from torch.utils._sympy.value_ranges import bound_sympy, ValueRangeAnalysis, ValueRanges |
| from .ir import InterpreterShim, LoopBody |
| from .utils import cache_on_self, dominated_nodes |
| from .virtualized import V |
| |
| |
| class BoundVars: |
| """ |
| Performs Value Range Analysis on LoopBody's fx graph by calling BoundVars.run() |
| It exposes the ranges of the nodes in the `bounds` variable |
| |
| Note. A current limitation of this analysis is that it just works on a per-loop basis. |
| We should be able to propagate the bounds between across the whole graph. This may benefit |
| the case a bounded variable is returned by a kernel and fed into another. |
| """ |
| |
| def __init__(self, loop_body: LoopBody): |
| self.loop_body = loop_body |
| self.replacement_vals = { |
| k: ValueRanges(0, v - 1) |
| if not free_symbols(v) |
| else ValueRanges(2, math.inf) |
| for k, v in loop_body.var_ranges.items() |
| } |
| # avoid computing these values, pessimistically assume that they are unbounded |
| self.unbounded_vars = dominated_nodes( |
| node |
| for node in self.loop_body.get_nodes() |
| if node.target in ["load", "reduction"] or "masked_subblock" in node.target |
| ) |
| # To access this variable call `get_bounds()` |
| self._bounds: Optional[Dict[torch.fx.Node, ValueRanges]] = {} |
| |
| @cache_on_self |
| def get_bounds(self): |
| submodules = self.swap_submodules(self.loop_body.submodules) |
| |
| # Initialize the environment with the unbounded variables |
| for node in self.unbounded_vars: |
| # we need to evaluate masked_subblock to recurse, and we need to set indirect values |
| if ( |
| "masked_subblock" not in node.target |
| and "set_indirect" not in node.target |
| ): |
| self._bounds[node] = ValueRanges.unknown() |
| |
| with V.set_ops_handler(ValueRangeAnalysis()): |
| interpreter = InterpreterShim(self.loop_body.root_block.graph, submodules) |
| interpreter.run(V.get_ops_handler(), initial_env=self._bounds) |
| return self._bounds |
| |
| def swap_submodules(self, submodules): |
| result = {} |
| for key in submodules.keys(): |
| if key == "get_index": |
| result[key] = self.get_index |
| elif "masked_subblock" in key: |
| subblock = self.loop_body.subblocks[key] |
| # The result within the lambda will reference to the final |
| # set of modules at the end of the for-loop as it stores a reference to it |
| result[key] = lambda mask, value: self.masked_subblock( |
| subblock, self._bounds, mask, value, result |
| ) |
| else: |
| assert "set_indirect" in key |
| idx = int(key[len("set_indirect") :]) |
| var = self.loop_body.indirect_vars[idx] |
| indirect = partial(self.set_indirect, var) |
| result[key] = indirect |
| |
| return result |
| |
| def masked_subblock(self, subblock, env, mask, value, submodules): |
| interp = InterpreterShim(subblock.graph, submodules) |
| interp.run(V.get_ops_handler(), initial_env=env) |
| output = [node for node in subblock.graph.nodes if node.target == "output"] |
| assert len(output) == 1 |
| # dont bother unioning with value since the load from buffer will be |
| # pessimistically assumed to be inf anyway |
| return interp.env[output[0]] |
| |
| def set_indirect(self, old, new): |
| assert isinstance(new, ValueRanges) |
| self.replacement_vals[old] = new |
| return new |
| |
| def get_index(self, name): |
| expr = self.loop_body.indexing_exprs[name] |
| bound = self.replacement_vals.get(expr) |
| if bound is None: |
| bound = bound_sympy(expr, self.replacement_vals) |
| # The following assertion is true at the time of this writing |
| # We don't assert is as to not execute bound_sympy when bound is not None |
| # assert bound is None or bound == bound_sympy(expr, self.replacement_vals) |
| self.replacement_vals[name] = bound |
| return bound |