| import torch |
| import functools |
| from torch import Tensor |
| from typing import Any, Callable, Optional, Tuple, Union |
| import warnings |
| |
| in_dims_t = Union[int, Tuple[Optional[int], ...]] |
| out_dims_t = Union[int, Tuple[int, ...]] |
| |
| # Checks that all args-to-be-batched have the same batch dim size |
| def _validate_and_get_batch_size( |
| in_dims_as_tuple: Tuple[Optional[int], ...], |
| args: Tuple) -> int: |
| batch_sizes = [arg.size(in_dim) for in_dim, arg in zip(in_dims_as_tuple, args) |
| if in_dim is not None] |
| if batch_sizes and any([size != batch_sizes[0] for size in batch_sizes]): |
| raise ValueError( |
| f'vmap: Expected all tensors to have the same size in the mapped ' |
| f'dimension, got sizes {batch_sizes} for the mapped dimension') |
| return batch_sizes[0] |
| |
| # Check compatibility of `in_dims` and `args`. More specifically, checks the following: |
| # Wherever an in_dim is not None, then the corresponding index in args must be |
| # a Tensor. Furthermore, tensor must have the `in_dim` (0 <= in_dim < tensor.dim()) |
| def _check_args_can_be_mapped_with_in_dims( |
| in_dims_as_tuple: Tuple[Optional[int], ...], |
| args: Tuple, |
| func: Callable, |
| in_dims: in_dims_t) -> None: |
| for idx, (in_dim, arg) in enumerate(zip(in_dims_as_tuple, args)): |
| if in_dim is None: |
| continue |
| if not isinstance(in_dim, int): |
| raise ValueError( |
| f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): in_dims ' |
| f'must be a flat tuple containing ints and/or Nones. If you were ' |
| f'trying to vmap over a Tensor inside a Python collection in ' |
| f'`inputs`, we do not yet support that.') |
| if not isinstance(arg, Tensor): |
| raise ValueError( |
| f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): Got ' |
| f'in_dim={in_dim} for input {idx}, but input {idx} is not a ' |
| f'Tensor (got {type(arg)}) so it cannot be vmap\'ed over. ' |
| f'If you were trying to vmap over a Tensor inside a Python ' |
| f'collection in `inputs`, we do not yet support that; otherwise, ' |
| f'use None as the respective in_dim for input {idx}.') |
| # NB: We don't do dimension wrapping here. Consider allowing it in the |
| # future if there is demand. |
| if in_dim >= 0 and in_dim < arg.dim(): |
| continue |
| raise ValueError( |
| f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): Got in_dim={in_dim} ' |
| f'for input {idx}, but input {idx} is a Tensor of dimensionality ' |
| f'{arg.dim()} so expected in_dim to satisfy 0 <= in_dim < {arg.dim()}.') |
| |
| def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int: |
| if isinstance(batched_outputs, tuple): |
| return len(batched_outputs) |
| return 1 |
| |
| # If value is a tuple, check it has length `num_elements`. |
| # If value is not a tuple, make a tuple with `value` repeated `num_elements` times |
| def _as_tuple(value: Any, num_elements: int, error_message_lambda: Callable[[], str]) -> Tuple: |
| if not isinstance(value, tuple): |
| return (value,) * num_elements |
| if len(value) != num_elements: |
| raise ValueError(error_message_lambda()) |
| return value |
| |
| # Creates BatchedTensors for every Tensor in arg that should be batched. |
| # Returns the (potentially) batched arguments and the batch_size. |
| def _create_batched_inputs( |
| in_dims: in_dims_t, args: Tuple, vmap_level: int, func: Callable) -> Tuple[Tuple, int]: |
| if not isinstance(in_dims, int) and not isinstance(in_dims, tuple): |
| raise ValueError( |
| f'vmap({_get_name(func)}, in_dims={in_dims}, ...): expected `in_dims` to ' |
| f'be int or tuple, got: {type(in_dims)}.') |
| |
| # NB: Checks that len(in_dims) == len(args) (if in_dims is a tuple). |
| in_dims_as_tuple = _as_tuple( |
| in_dims, len(args), |
| lambda: f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): expected ' |
| f'one `in_dim` per input (got {len(args)} inputs) of {_get_name(func)}') |
| |
| if len(args) == 0: |
| raise ValueError( |
| f'vmap({_get_name(func)})(<inputs>): got no inputs. Maybe you forgot to add ' |
| f'inputs, or you are trying to vmap over a function with no inputs. ' |
| f'The latter is unsupported.') |
| |
| _check_args_can_be_mapped_with_in_dims(in_dims_as_tuple, args, func, in_dims) |
| batch_size = _validate_and_get_batch_size(in_dims_as_tuple, args) |
| # See NOTE [Ignored _remove_batch_dim, _add_batch_dim] |
| batched_inputs = tuple(arg if in_dim is None else |
| torch._add_batch_dim(arg, in_dim, vmap_level) # type: ignore |
| for in_dim, arg in zip(in_dims_as_tuple, args)) |
| return batched_inputs, batch_size |
| |
| # Undos the batching (and any batch dimensions) associated with the `vmap_level`. |
| def _unwrap_batched( |
| batched_outputs: Union[Tensor, Tuple[Tensor, ...]], |
| out_dims: out_dims_t, |
| vmap_level: int, batch_size: int, func: Callable) -> Tuple: |
| num_outputs = _num_outputs(batched_outputs) |
| out_dims_as_tuple = _as_tuple( |
| out_dims, num_outputs, |
| lambda: f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must ' |
| f'have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.') |
| |
| # NOTE [Ignored _remove_batch_dim, _add_batch_dim] |
| # There is something wrong with our type bindings for functions that begin |
| # with '_', see #40397. |
| if isinstance(batched_outputs, Tensor): |
| out_dim = out_dims_as_tuple[0] |
| return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore |
| return tuple(torch._remove_batch_dim(out, vmap_level, batch_size, out_dim) # type: ignore |
| for out, out_dim in zip(batched_outputs, out_dims_as_tuple)) |
| |
| # Checks that `fn` returned one or more Tensors and nothing else. |
| # NB: A python function that return multiple arguments returns a single tuple, |
| # so we are effectively checking that `outputs` is a single Tensor or a tuple of |
| # Tensors. |
| def _validate_outputs(outputs: Any, func: Callable) -> None: |
| if isinstance(outputs, Tensor): |
| return |
| if not isinstance(outputs, tuple): |
| raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return ' |
| f'Tensors, got type {type(outputs)} as the return.') |
| for idx, output in enumerate(outputs): |
| if isinstance(output, Tensor): |
| continue |
| raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return ' |
| f'Tensors, got type {type(output)} for return {idx}.') |
| |
| def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None: |
| if isinstance(out_dims, int): |
| return |
| if not isinstance(out_dims, tuple) or \ |
| not all([isinstance(out_dim, int) for out_dim in out_dims]): |
| raise ValueError( |
| f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be ' |
| f'an int or a tuple of int representing where in the outputs the ' |
| f'vmapped dimension should appear.') |
| |
| def _get_name(func: Callable): |
| if hasattr(func, '__name__'): |
| return func.__name__ |
| |
| # Not all callables have __name__, in fact, only static functions/methods do. |
| # A callable created via functools.partial or an nn.Module, to name some |
| # examples, don't have a __name__. |
| fn_name = repr(func) |
| |
| # vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors, |
| # sends those into func, and then unwraps the output BatchedTensors. Operations |
| # on BatchedTensors perform the batched operations that the user is asking for. |
| def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable: |
| """ |
| vmap is the vectorizing map. Returns a new function that maps `func` over some |
| dimension of the inputs. Semantically, vmap pushes the map into PyTorch |
| operations called by `func`, effectively vectorizing those operations. |
| |
| vmap is useful for handling batch dimensions: one can write a function `func` |
| that runs on examples and the lift it to a function that can take batches of |
| examples with `vmap(func)`. Furthermore, it is possible to use vmap to obtain |
| batched gradients when composed with autograd. |
| |
| Args: |
| func (function): A Python function that takes one or more arguments. |
| Must return one or more Tensors. |
| in_dims (int or Tuple[Optional[int]]): Specifies which dimension of the |
| inputs should be mapped over. If `in_dims` is a Tuple, then it should have |
| one element per input. If the `in_dim` for a particular input is |
| None, then that indicates there is no map dimension. Default: 0. |
| out_dims (int or Tuple[int]): Specifies where the mapped dimension |
| should appear in the outputs. If `out_dims` is a Tuple, then it should |
| have one element per output. Default: 0. |
| |
| Returns: |
| Returns a new "batched" function. It takes the same inputs as `func`, |
| except each input has an extra dimension at the index specified by `in_dims`. |
| It takes returns the same outputs as `func`, except each output has |
| an extra dimension at the index specified by `out_dims`. |
| |
| .. warning: |
| vmap works best with functional-style code. Please do not perform any |
| side-effects in `func`, with the exception of in-place PyTorch operations. |
| Examples of side-effects include mutating Python data structures and |
| assigning values to variables not captured in `func`. |
| |
| .. warning:: |
| torch.vmap is an experimental prototype that is subject to |
| change and/or deletion. Please use at your own risk. |
| """ |
| warnings.warn( |
| 'torch.vmap is an experimental prototype that is subject to ' |
| 'change and/or deletion. Please use at your own risk.') |
| |
| @functools.wraps(func) |
| def wrapped(*args): |
| _check_out_dims_is_int_or_int_tuple(out_dims, func) |
| vmap_level = torch._C._vmapmode_increment_nesting() |
| try: |
| batched_inputs, batch_size = _create_batched_inputs(in_dims, args, vmap_level, func) |
| batched_outputs = func(*batched_inputs) |
| _validate_outputs(batched_outputs, func) |
| return _unwrap_batched(batched_outputs, out_dims, vmap_level, batch_size, func) |
| finally: |
| torch._C._vmapmode_decrement_nesting() |
| return wrapped |