blob: 349d29d9f7bdbb0a76cc03892ff8aea4d2dcea03 [file] [log] [blame]
"""Functional interface"""
from numbers import Integral
import warnings
import math
import torch
from torch._C import _infer_size
from . import _functions
from .modules import utils
from ._functions.linear import Bilinear
from ._functions.padding import ConstantPadNd
from ._functions.vision import GridSampler, AffineGridGenerator
from ..autograd import _functions as _autograd_functions
from torch.autograd import Variable
from .modules.utils import _single, _pair, _triple
# Convolutions
ConvNd = torch._C._functions.ConvNd
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1):
"""Applies a 2D convolution over an input image composed of several input
planes.
See :class:`~torch.nn.Conv2d` for details and output shape.
Args:
input: input tensor (minibatch x in_channels x iH x iW)
weight: filters tensor (out_channels, in_channels/groups, kH, kW)
bias: optional bias tensor (out_channels). Default: None
stride: the stride of the convolving kernel. Can be a single number or
a tuple (sh x sw). Default: 1
padding: implicit zero padding on the input. Can be a single number or
a tuple. Default: 0
dilation: the spacing between kernel elements. Default: 1
groups: split input into groups, in_channels should be divisible by
the number of groups. Default: 1
Examples::
>>> # With square kernels and equal stride
>>> filters = autograd.Variable(torch.randn(8,4,3,3))
>>> inputs = autograd.Variable(torch.randn(1,4,5,5))
>>> F.conv2d(inputs, filters, padding=1)
"""
if input is not None and input.dim() != 4:
raise ValueError("Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()))
f = ConvNd(_pair(stride), _pair(padding), _pair(dilation), False,
_pair(0), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1):
"""Applies a 1D convolution over an input signal composed of several input
planes.
See :class:`~torch.nn.Conv1d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iW)
weight: filters of shape (out_channels, in_channels, kW)
bias: optional bias of shape (out_channels). Default: None
stride: the stride of the convolving kernel, default 1
padding: implicit zero padding on the input. Can be a single number or
a tuple. Default: 0
dilation: the spacing between kernel elements. Default: 1
groups: split input into groups, in_channels should be divisible by
the number of groups. Default: 1
Examples::
>>> filters = autograd.Variable(torch.randn(33, 16, 3))
>>> inputs = autograd.Variable(torch.randn(20, 16, 50))
>>> F.conv1d(inputs, filters)
"""
if input is not None and input.dim() != 3:
raise ValueError("Expected 3D tensor as input, got {}D tensor instead.".format(input.dim()))
f = ConvNd(_single(stride), _single(padding), _single(dilation), False,
_single(0), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1):
"""Applies a 3D convolution over an input image composed of several input
planes.
See :class:`~torch.nn.Conv3d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
weight: filters tensor of shape (out_channels, in_channels, kT, kH, kW)
bias: optional bias tensor of shape (out_channels). Default: None
stride: the stride of the convolving kernel. Can be a single number or
a tuple (st x sh x sw). Default: 1
padding: implicit zero padding on the input. Can be a single number or
a tuple. Default: 0
dilation: the spacing between kernel elements. Default: 1
groups: split input into groups, in_channels should be divisible by
the number of groups. Default: 1
Examples::
>>> filters = autograd.Variable(torch.randn(33, 16, 3, 3, 3))
>>> inputs = autograd.Variable(torch.randn(20, 16, 50, 10, 20))
>>> F.conv3d(inputs, filters)
"""
if input is not None and input.dim() != 5:
raise ValueError("Expected 5D tensor as input, got {}D tensor instead.".format(input.dim()))
f = ConvNd(_triple(stride), _triple(padding), _triple(dilation), False,
_triple(0), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv_transpose1d(input, weight, bias=None, stride=1, padding=0,
output_padding=0, groups=1, dilation=1):
"""Applies a 1D transposed convolution operator over an input signal
composed of several input planes, sometimes also called "deconvolution".
See :class:`~torch.nn.ConvTranspose1d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iW)
weight: filters of shape (in_channels x out_channels x kW)
bias: optional bias of shape (out_channels). Default: None
stride: the stride of the convolving kernel. Default: 1
padding: implicit zero padding on the input. Default: 0
groups: split input into groups, in_channels should be divisible by
the number of groups. Default: 1
output_padding: A zero-padding of 0 <= padding < stride that should be
added to the output. Default: 0
dilation: the spacing between kernel elements. Default: 1
"""
if input is not None and input.dim() != 3:
raise ValueError("Expected 3D tensor as input, got {}D tensor instead.".format(input.dim()))
f = ConvNd(_single(stride), _single(padding), _single(dilation), True,
_single(output_padding),
groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv_transpose2d(input, weight, bias=None, stride=1, padding=0,
output_padding=0, groups=1, dilation=1):
"""Applies a 2D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution".
See :class:`~torch.nn.ConvTranspose2d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iH x iW)
weight: filters of shape (in_channels x out_channels x kH x kW)
bias: optional bias of shape (out_channels). Default: None
stride: the stride of the convolving kernel, a single number or a
tuple (sh x sw). Default: 1
padding: implicit zero padding on the input, a single number or a
tuple (padh x padw). Default: 0
groups: split input into groups, in_channels should be divisible by
the number of groups. Default: 1
output_padding: A zero-padding of 0 <= padding < stride that should be
added to the output. Can be a single number or a tuple. Default: 0
dilation: the spacing between kernel elements. Default: 1
"""
if input is not None and input.dim() != 4:
raise ValueError("Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()))
f = ConvNd(_pair(stride), _pair(padding), _pair(dilation), True,
_pair(output_padding), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv_transpose3d(input, weight, bias=None, stride=1, padding=0,
output_padding=0, groups=1, dilation=1):
"""Applies a 3D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution"
See :class:`~torch.nn.ConvTranspose3d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
weight: filters of shape (in_channels x out_channels x kH x kW)
bias: optional bias of shape (out_channels). Default: None
stride: the stride of the convolving kernel, a single number or a
tuple (sh x sw). Default: 1
padding: implicit zero padding on the input, a single number or a
tuple (padh x padw). Default: 0
output_padding: A zero-padding of 0 <= padding < stride that should be
added to the output. Can be a single number or a tuple. Default: 0
groups: split input into groups, in_channels should be divisible by
the number of groups. Default: 1
dilation: the spacing between kernel elements. Default: 1
"""
if input is not None and input.dim() != 5:
raise ValueError("Expected 5D tensor as input, got {}D tensor instead.".format(input.dim()))
f = ConvNd(_triple(stride), _triple(padding), _triple(dilation), True,
_triple(output_padding), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
# Pooling
def avg_pool1d(input, kernel_size, stride=None, padding=0,
ceil_mode=False, count_include_pad=True):
r"""Applies a 1D average pooling over an input signal composed of several
input planes.
See :class:`~torch.nn.AvgPool1d` for details and output shape.
Args:
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: implicit zero padding to be added on both sides. Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` to compute the
output shape. Default: False
count_include_pad: when True, will include the zero-padding in the
averaging calculation. Default: True
Example:
>>> # pool of square window of size=3, stride=2
>>> input = Variable(torch.Tensor([[[1,2,3,4,5,6,7]]]))
>>> F.avg_pool1d(input, kernel_size=3, stride=2)
Variable containing:
(0 ,.,.) =
2 4 6
[torch.FloatTensor of size 1x1x3]
"""
if input.dim() != 3:
raise ValueError('expected 3D input (got {} dimensions)'
.format(input.dim()))
kernel_size = _single(kernel_size) + (1,)
stride = _single(stride) + (1,) if stride is not None else kernel_size
padding = _single(padding) + (0,)
return _functions.thnn.AvgPool2d.apply(input.unsqueeze(3), kernel_size, stride, padding,
ceil_mode, count_include_pad).squeeze(3)
def avg_pool2d(input, kernel_size, stride=None, padding=0,
ceil_mode=False, count_include_pad=True):
"""Applies 2D average-pooling operation in kh x kw regions by step size
dh x dw steps. The number of output features is equal to the number of
input planes.
See :class:`~torch.nn.AvgPool2d` for details and output shape.
Args:
input: input tensor (minibatch x in_channels x iH x iW)
kernel_size: size of the pooling region, a single number or a
tuple (kh x kw)
stride: stride of the pooling operation, a single number or a
tuple (sh x sw). Default is equal to kernel size
padding: implicit zero padding on the input, a single number or
a tuple (padh x padw), Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
to compute the output shape. Default: False
count_include_pad: when True, will include the zero-padding in th
averaging calculation. Default: True
"""
return _functions.thnn.AvgPool2d.apply(input, kernel_size, stride, padding,
ceil_mode, count_include_pad)
def avg_pool3d(input, kernel_size, stride=None, padding=0,
ceil_mode=False, count_include_pad=True):
"""Applies 3D average-pooling operation in kt x kh x kw regions by step
size dt x dh x dw steps. The number of output features is equal to the
number of input planes / dt.
See :class:`~torch.nn.AvgPool3d` for details and output shape.
Args:
input: input tensor (minibatch x in_channels x iT x iH x iW)
kernel_size: size of the pooling region, a single number or a
tuple (kt x kh x kw)
stride: stride of the pooling operation, a single number or a
tuple (st x sh x sw). Default is equal to kernel size
padding: implicit zero padding on the input, a single number or
a tuple (padt x padh x padw), Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
to compute the output shape
count_include_pad: when True, will include the zero-padding in th
averaging calculation
"""
return _functions.thnn.AvgPool3d.apply(input, kernel_size, stride, padding,
ceil_mode, count_include_pad)
# share the same interface
def max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
ret = _functions.thnn.MaxPool1d.apply(input, kernel_size, stride, padding, dilation,
ceil_mode)
return ret if return_indices else ret[0]
def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
ret = _functions.thnn.MaxPool2d.apply(input, kernel_size, stride, padding, dilation,
ceil_mode)
return ret if return_indices else ret[0]
def max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
ret = _functions.thnn.MaxPool3d.apply(input, kernel_size, stride, padding, dilation,
ceil_mode)
return ret if return_indices else ret[0]
def _unpool_output_size(input, kernel_size, stride, padding, output_size):
input_size = input.size()
default_size = []
for d in range(len(kernel_size)):
default_size.append((input_size[d + 2] - 1) * stride[d] +
kernel_size[d] - 2 * padding[d])
if output_size is None:
return default_size
output_size = list(output_size)
if len(output_size) == len(kernel_size) + 2:
output_size = output_size[2:]
if len(output_size) != len(kernel_size):
raise ValueError("output_size should be a sequence containing "
"{} or {} elements, but it has a length of '{}'"
.format(len(kernel_size), len(kernel_size) + 2,
len(output_size)))
for d in range(len(kernel_size)):
min_size = default_size[d] - stride[d]
max_size = default_size[d] + stride[d]
if not (min_size < output_size[d] < max_size):
raise ValueError(
'invalid output_size "{}" (dim {} must be between {} and {})'
.format(output_size, d, min_size, max_size))
return output_size
def max_unpool1d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
kernel_size = _single(kernel_size)
stride = _single(stride)
padding = _single(padding)
output_size = _unpool_output_size(input, kernel_size, stride, padding,
output_size)
return _functions.thnn.MaxUnpool2d.apply(input.unsqueeze(3), indices.unsqueeze(3), output_size + [1]).squeeze(3)
def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
output_size = _unpool_output_size(input, kernel_size, stride, padding,
output_size)
return _functions.thnn.MaxUnpool2d.apply(input, indices, output_size)
def max_unpool3d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
kernel_size = _triple(kernel_size)
stride = _triple(stride)
padding = _triple(padding)
output_size = _unpool_output_size(input, kernel_size, stride, padding,
output_size)
return _functions.thnn.MaxUnpool3d.apply(input, indices, output_size, stride, padding)
def lp_pool2d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
kw, kh = utils._pair(kernel_size)
out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
return out.mul(kw * kh).pow(1. / norm_type)
def lp_pool1d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
out = avg_pool1d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
return out.mul(kernel_size).pow(1. / norm_type)
def adaptive_max_pool1d(input, output_size, return_indices=False):
r"""Applies a 1D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
return_indices: whether to return pooling indices. Default: False
"""
ret = _functions.thnn.AdaptiveMaxPool1d.apply(input, output_size)
return ret if return_indices else ret[0]
def adaptive_max_pool2d(input, output_size, return_indices=False):
r"""Applies a 2D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or
double-integer tuple)
return_indices: whether to return pooling indices. Default: False
"""
ret = _functions.thnn.AdaptiveMaxPool2d.apply(input, output_size)
return ret if return_indices else ret[0]
def adaptive_avg_pool1d(input, output_size):
r"""Applies a 1D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
"""
return _functions.thnn.AdaptiveAvgPool1d.apply(input, output_size)
def adaptive_avg_pool2d(input, output_size):
r"""Applies a 2D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or
double-integer tuple)
"""
return _functions.thnn.AdaptiveAvgPool2d.apply(input, output_size)
def adaptive_avg_pool3d(input, output_size):
r"""Applies a 3D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool3d` for details and output shape.
Args:
output_size: the target output size (single integer or
triple-integer tuple)
"""
return _functions.thnn.AdaptiveAvgPool3d.apply(input, output_size)
# Activation functions
def dropout(input, p=0.5, training=False, inplace=False):
return _functions.dropout.Dropout.apply(input, p, training, inplace)
def alpha_dropout(input, p=0.5, training=False):
r"""Applies alpha dropout to the input.
See :class:`~torch.nn.AlphaDropout` for details.
Args:
p (float, optional): the drop probability. Default: 0.5
training (bool, optional): switch between training and evaluation mode. Default: False
"""
if p < 0 or p > 1:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
if p == 0 or not training:
return input
alpha = -1.7580993408473766
keep_prob = 1 - p
# TODO avoid casting to byte after resize
noise = input.data.new().resize_(input.size())
noise.bernoulli_(p)
noise = Variable(noise.byte())
output = input.masked_fill(noise, alpha)
a = (keep_prob + alpha ** 2 * keep_prob * (1 - keep_prob)) ** (-0.5)
b = -a * alpha * (1 - keep_prob)
return output.mul_(a).add_(b)
def dropout2d(input, p=0.5, training=False, inplace=False):
return _functions.dropout.FeatureDropout.apply(input, p, training, inplace)
def dropout3d(input, p=0.5, training=False, inplace=False):
return _functions.dropout.FeatureDropout.apply(input, p, training, inplace)
def threshold(input, threshold, value, inplace=False):
return _functions.thnn.Threshold.apply(input, threshold, value, inplace)
def relu(input, inplace=False):
return _functions.thnn.Threshold.apply(input, 0, 0, inplace)
def glu(input, dim=-1):
ndim = input.dim()
if dim < -ndim or dim >= ndim:
raise IndexError("dim {} is out of range for tensor of dimension {}"
.format(dim, ndim))
if dim < 0:
dim += ndim
return _functions.thnn.GatedLinear.apply(input, dim)
def hardtanh(input, min_val=-1., max_val=1., inplace=False):
return _functions.thnn.auto.Hardtanh.apply(input, min_val, max_val, inplace)
def relu6(input, inplace=False):
return _functions.thnn.auto.Hardtanh.apply(input, 0, 6, inplace)
def elu(input, alpha=1., inplace=False):
return _functions.thnn.auto.ELU.apply(input, alpha, inplace)
def selu(input, inplace=False):
return _functions.thnn.SELU.apply(input, inplace)
def leaky_relu(input, negative_slope=1e-2, inplace=False):
return _functions.thnn.LeakyReLU.apply(input, negative_slope, inplace)
def prelu(input, weight):
return _functions.thnn.PReLU.apply(input, weight)
def rrelu(input, lower=1. / 8, upper=1. / 3, training=False, inplace=False):
return _functions.thnn.RReLU.apply(input, lower, upper, training, inplace)
def logsigmoid(input):
return _functions.thnn.LogSigmoid.apply(input)
def hardshrink(input, lambd=0.5):
return _functions.thnn.auto.Hardshrink.apply(input, lambd)
def tanhshrink(input):
return input - _autograd_functions.Tanh.apply(input)
def softsign(input):
return _functions.activation.Softsign.apply(input)
def softplus(input, beta=1, threshold=20):
return _functions.thnn.auto.Softplus.apply(input, beta, threshold)
def softmin(input):
return _functions.thnn.Softmin.apply(input)
def softmax(input):
return _functions.thnn.auto.Softmax.apply(input)
def softshrink(input, lambd=0.5):
return _functions.thnn.auto.Softshrink.apply(input, lambd)
def log_softmax(input):
return _functions.thnn.LogSoftmax.apply(input)
def tanh(input):
return _autograd_functions.Tanh.apply(input)
def sigmoid(input):
return _autograd_functions.Sigmoid.apply(input)
# etc.
def linear(input, weight, bias=None):
if input.dim() == 2 and bias is not None:
# fused op is marginally faster
return torch.addmm(bias, input, weight.t())
output = input.matmul(weight.t())
if bias is not None:
output += bias
return output
def bilinear(input1, input2, weight, bias=None):
if bias is None:
return Bilinear.apply(input1, input2, weight)
else:
return Bilinear.apply(input1, input2, weight, bias)
def embedding(input, embedding_matrix,
max_norm=None, norm_type=2, scale_grad_by_freq=False,
sparse=False):
r"""A simple lookup table that looks up embeddings in a fixed dictionary and size.
This module is often used to retrieve word embeddings using indices.
The input to the module is a list of indices, and the embedding matrix,
and the output is the corresponding word embeddings.
Args:
input: tensor, containing indices into the embedding matrix
embedding_matrix:
Number of rows should correspond to the maximum possible index + 1,
number of columns is the embedding size
max_norm (float, optional): If given, will renormalize the embeddings to always have a norm lesser than this
norm_type (float, optional): The p of the p-norm to compute for the max_norm option
scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the frequency of
the words in the mini-batch.
Shape:
- Input: LongTensor `(N, W)`, N = mini-batch, W = number of indices to extract per mini-batch
- Embedding_matrix: FloatTensor `(V, embedding_dim)`, V = maximum index + 1, embedding_dim = embedding size
- Output: `(N, W, embedding_dim)`
Examples::
>>> # a batch of 2 samples of 4 indices each
>>> input = Variable(torch.LongTensor([[1,2,4,5],[4,3,2,9]]))
>>> # an embedding matrix containing 10 tensors of size 3
>>> embedding_matrix = Variable(torch.rand(10, 3))
>>> torch.nn.functional.embedding(input, embedding_matrix)
Variable containing:
(0 ,.,.) =
-1.0822 1.2522 0.2434
0.8393 -0.6062 -0.3348
0.6597 0.0350 0.0837
0.5521 0.9447 0.0498
(1 ,.,.) =
0.6597 0.0350 0.0837
-0.1527 0.0877 0.4260
0.8393 -0.6062 -0.3348
-0.8738 -0.9054 0.4281
[torch.FloatTensor of size 2x4x3]
>>> # example with padding_idx
>>> embedding_matrix = Variable(torch.rand(10, 3))
>>> embedding_matrix[0].zero_()
>>> input = Variable(torch.LongTensor([[0,2,0,5]]))
>>> torch.nn.functional.embedding(input, embedding_matrix)
Variable containing:
(0 ,.,.) =
0.0000 0.0000 0.0000
0.3452 0.4937 -0.9361
0.0000 0.0000 0.0000
0.0706 -2.1962 -0.6276
[torch.FloatTensor of size 1x4x3]
"""
return torch.nn.backends.thnn.backend.Embedding.apply(
input, embedding_matrix,
-1, max_norm, norm_type,
scale_grad_by_freq, sparse
)
def batch_norm(input, running_mean, running_var, weight=None, bias=None,
training=False, momentum=0.1, eps=1e-5):
f = torch._C._functions.BatchNorm(running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled)
return f(input, weight, bias)
# loss
def nll_loss(input, target, weight=None, size_average=True, ignore_index=-100):
r"""The negative log likelihood loss.
See :class:`~torch.nn.NLLLoss` for details.
Args:
input: :math:`(N, C)` where `C = number of classes` or `(N, C, H, W)`
in case of 2D - Loss
target: :math:`(N)` where each value is `0 <= targets[i] <= C-1`
weight (Variable, optional): a manual rescaling weight given to each
class. If given, has to be a Variable of size "nclasses"
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. If size_average
is False, the losses are summed for each minibatch. Default: True
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When size_average is
True, the loss is averaged over non-ignored targets. Default: -100
Example::
>>> # input is of size nBatch x nClasses = 3 x 5
>>> input = autograd.Variable(torch.randn(3, 5))
>>> # each element in target has to have 0 <= value < nclasses
>>> target = autograd.Variable(torch.LongTensor([1, 0, 4]))
>>> output = F.nll_loss(F.log_softmax(input), target)
>>> output.backward()
"""
dim = input.dim()
if dim == 2:
return _functions.thnn.NLLLoss.apply(input, target, weight, size_average, ignore_index)
elif dim == 4:
return _functions.thnn.NLLLoss2d.apply(input, target, weight, size_average, ignore_index)
else:
raise ValueError('Expected 2 or 4 dimensions (got {})'.format(dim))
def poisson_nll_loss(input, target, log_input=True, full=False, size_average=True):
r"""Poisson negative log likelihood loss.
See :class:`~torch.nn.PoissonNLLLoss` for details.
Args:
input: expectation of underlying Poisson distribution.
target: random sample :math:`target \sim Pois(input)`.
log_input: if True the loss is computed as
`exp(input) - target * input`, if False then loss is
`input - target * log(input)`. Default: True
full: whether to compute full loss, i. e. to add the Stirling
approximation term. Default: False
`target * log(target) - target + 0.5 * log(2 * pi * target)`.
size_average: By default, the losses are averaged over observations for
each minibatch. However, if the field sizeAverage is set to False,
the losses are instead summed for each minibatch. Default: True
"""
if log_input:
loss = torch.exp(input) - target * input
else:
loss = input - target * torch.log(input)
if full:
mask = target > 1
loss[mask] += (target * torch.log(target) - target + 0.5 * torch.log(2 * math.pi * target))[mask]
if size_average:
return torch.mean(loss)
else:
return torch.sum(loss)
def kl_div(input, target, size_average=True, weight=None):
r"""The `Kullback-Leibler divergence`_ Loss.
See :class:`~torch.nn.KLDivLoss` for details.
Args:
input: Variable of arbitrary shape
target: Variable of the same shape as input
size_average: if True the output is divided by the number of elements
in input tensor. Default: True
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size "nclasses"
"""
return _functions.thnn.KLDivLoss.apply(input, target, size_average)
def cross_entropy(input, target, weight=None, size_average=True, ignore_index=-100):
r"""This criterion combines `log_softmax` and `nll_loss` in a single
function.
See :class:`torch.nn.CrossEntropyLoss` for details.
Args:
input: Variable :math:`(N, C)` where `C = number of classes`
target: Variable :math:`(N)` where each value is
`0 <= targets[i] <= C-1`
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size "nclasses"
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch. Default: True
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When size_average is
True, the loss is averaged over non-ignored targets. Default: -100
Examples::
>>> input = autograd.Variable(torch.randn(3, 5), requires_grad=True)
>>> target = autograd.Variable(torch.LongTensor(3).random_(5))
>>> loss = F.cross_entropy(input, target)
>>> loss.backward()
"""
return nll_loss(log_softmax(input), target, weight, size_average, ignore_index)
def binary_cross_entropy(input, target, weight=None, size_average=True):
r"""Function that measures the Binary Cross Entropy
between the target and the output.
See :class:`~torch.nn.BCELoss` for details.
Args:
input: Variable of arbitrary shape
target: Variable of the same shape as input
weight (Variable, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch. Default: True
Examples::
>>> input = autograd.Variable(torch.randn(3), requires_grad=True)
>>> target = autograd.Variable(torch.LongTensor(3).random_(2))
>>> loss = F.binary_cross_entropy(F.sigmoid(input), target)
>>> loss.backward()
"""
if not (target.size() == input.size()):
warnings.warn("Using a target size ({}) that is different to the input size ({}) is deprecated. "
"Please ensure they have the same size.".format(target.size(), input.size()))
if input.nelement() != target.nelement():
raise ValueError("Target and input must have the same number of elements. target nelement ({}) "
"!= input nelement ({})".format(target.nelement(), input.nelement()))
if weight is not None:
new_size = _infer_size(target.size(), weight.size())
weight = weight.expand(new_size)
return _functions.thnn.BCELoss.apply(input, target, weight, size_average)
def binary_cross_entropy_with_logits(input, target, weight=None, size_average=True):
r"""Function that measures Binary Cross Entropy between target and output
logits.
See :class:`~torch.nn.BCEWithLogitsLoss` for details.
Args:
input: Variable of arbitrary shape
target: Variable of the same shape as input
weight (Variable, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch. Default: True
Examples::
>>> input = autograd.Variable(torch.randn(3), requires_grad=True)
>>> target = autograd.Variable(torch.FloatTensor(3).random_(2))
>>> loss = F.binary_cross_entropy_with_logits(input, target)
>>> loss.backward()
"""
if not (target.size() == input.size()):
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
max_val = (-input).clamp(min=0)
loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log()
if weight is not None:
loss = loss * weight
if size_average:
return loss.mean()
else:
return loss.sum()
def smooth_l1_loss(input, target, size_average=True):
return _functions.thnn.SmoothL1Loss.apply(input, target, size_average)
def l1_loss(input, target, size_average=True):
return _functions.thnn.L1Loss.apply(input, target, size_average)
def mse_loss(input, target, size_average=True):
return _functions.thnn.MSELoss.apply(input, target, size_average)
def margin_ranking_loss(input1, input2, target, margin=0, size_average=True):
return _functions.loss.MarginRankingLoss.apply(input1, input2, target, margin, size_average)
def hinge_embedding_loss(input, target, margin=1.0, size_average=True):
return _functions.loss.HingeEmbeddingLoss.apply(input, target, margin, size_average)
def multilabel_margin_loss(input, target, size_average=True):
return _functions.thnn.MultiLabelMarginLoss.apply(input, target, size_average)
def soft_margin_loss(input, target, size_average=True):
return _functions.thnn.SoftMarginLoss.apply(input, target, size_average)
def multilabel_soft_margin_loss(input, target, weight=None, size_average=True):
input = torch.sigmoid(input)
return binary_cross_entropy(input, target, weight, size_average)
def cosine_embedding_loss(input1, input2, target, margin=0, size_average=True):
return _functions.loss.CosineEmbeddingLoss.apply(input1, input2, target, margin, size_average)
def multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=True):
if p != 1 and p != 2:
raise ValueError('only p == 1 and p == 2 supported')
if weight is not None and weight.dim() != 1:
raise ValueError('weight must be one-dimensional')
return _functions.thnn.MultiMarginLoss.apply(input, target, weight, size_average, p, margin)
def pixel_shuffle(input, upscale_factor):
r"""Rearranges elements in a tensor of shape ``[*, C*r^2, H, W]`` to a
tensor of shape ``[C, H*r, W*r]``.
See :class:`~torch.nn.PixelShuffle` for details.
Args:
input (Variable): Input
upscale_factor (int): factor to increase spatial resolution by
Examples::
>>> ps = nn.PixelShuffle(3)
>>> input = autograd.Variable(torch.Tensor(1, 9, 4, 4))
>>> output = ps(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
"""
batch_size, channels, in_height, in_width = input.size()
channels //= upscale_factor ** 2
out_height = in_height * upscale_factor
out_width = in_width * upscale_factor
input_view = input.contiguous().view(
batch_size, channels, upscale_factor, upscale_factor,
in_height, in_width)
shuffle_out = input_view.permute(0, 1, 4, 2, 5, 3).contiguous()
return shuffle_out.view(batch_size, channels, out_height, out_width)
def upsample(input, size=None, scale_factor=None, mode='nearest'):
"""Upsamples the input to either the given :attr:`size` or the given
:attr:`scale_factor`
The algorithm used for upsampling is determined by :attr:`mode`.
Currently temporal, spatial and volumetric upsampling are supported, i.e.
expected inputs are 3-D, 4-D or 5-D in shape.
The input dimensions are interpreted in the form:
`mini-batch x channels x [depth] x [height] x width`
The modes available for upsampling are: `nearest`, `linear` (3D-only),
`bilinear` (4D-only), `trilinear` (5D-only)
Args:
input (Variable): input
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
output spatial size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
mode (string): algorithm used for upsampling:
'nearest' | 'linear' | 'bilinear' | 'trilinear'. Default: 'nearest'
"""
if input.dim() == 3 and mode == 'nearest':
return _functions.thnn.UpsamplingNearest1d.apply(input, _single(size), scale_factor)
elif input.dim() == 4 and mode == 'nearest':
return _functions.thnn.UpsamplingNearest2d.apply(input, _pair(size), scale_factor)
elif input.dim() == 5 and mode == 'nearest':
return _functions.thnn.UpsamplingNearest3d.apply(input, _triple(size), scale_factor)
elif input.dim() == 3 and mode == 'linear':
return _functions.thnn.UpsamplingLinear1d.apply(input, _single(size), scale_factor)
elif input.dim() == 3 and mode == 'bilinear':
raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input")
elif input.dim() == 3 and mode == 'trilinear':
raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input")
elif input.dim() == 4 and mode == 'linear':
raise NotImplementedError("Got 4D input, but linear mode needs 3D input")
elif input.dim() == 4 and mode == 'bilinear':
return _functions.thnn.UpsamplingBilinear2d.apply(input, _pair(size), scale_factor)
elif input.dim() == 4 and mode == 'trilinear':
raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input")
elif input.dim() == 5 and mode == 'linear':
raise NotImplementedError("Got 5D input, but linear mode needs 3D input")
elif input.dim() == 5 and mode == 'bilinear':
raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input")
elif input.dim() == 5 and mode == 'trilinear':
return _functions.thnn.UpsamplingTrilinear3d.apply(input, _triple(size), scale_factor)
else:
raise NotImplementedError("Input Error: Only 3D, 4D and 5D input Tensors supported"
" (got {}D) for the modes: nearest | linear | bilinear | trilinear"
" (got {})".format(input.dim(), mode))
def upsample_nearest(input, size=None, scale_factor=None):
"""Upsamples the input, using nearest neighbours' pixel values.
**Note:: This function is deprecated. Use nn.functional.upsample instead**
Currently spatial and volumetric upsampling are supported (i.e. expected
inputs are 4 or 5 dimensional).
Args:
input (Variable): input
size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia
size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
"""
# DeprecationWarning is ignored by default
warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.upsample instead.")
return upsample(input, size, scale_factor, mode='nearest')
def upsample_bilinear(input, size=None, scale_factor=None):
"""Upscales the input, using bilinear upsampling.
**Note:: This function is deprecated. Use nn.functional.upsample instead**
Expected inputs are spatial (4 dimensional). Use upsample_trilinear fo
volumetric (5 dimensional) inputs.
Args:
input (Variable): input
size (int or Tuple[int, int]): output spatial size.
scale_factor (int or Tuple[int, int]): multiplier for spatial size
"""
# DeprecationWarning is ignored by default
warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.upsample instead.")
return upsample(input, size, scale_factor, mode='bilinear')
def grid_sample(input, grid, mode='bilinear'):
"""Given an :attr:`input` and a flow-field :attr:`grid`, computes the
`output` using input pixel locations from the grid.
Uses bilinear interpolation to sample the input pixels.
Currently, only spatial (4 dimensional) inputs are supported.
For each output location, :attr:`grid` has `x` and `y`
input pixel locations which are used to compute output.
:attr:`grid` has values in the range of `[-1, 1]`. This is because the
pixel locations are normalized by the input height and width.
For example, values: x: -1, y: -1 is the left-top pixel of the input
values: x: 1, y: 1 is the right-bottom pixel of the input
If :attr:`grid` has values outside the range of `[-1, 1]`, those locations
are ignored (i.e. 0 is used as a contribution to the bilinear interpolation)
.. Note:: This function is used in building Spatial Transformer Networks
Args:
input (Variable): input batch of images (N x C x IH x IW)
grid (Variable): flow-field of size (N x OH x OW x 2)
Returns:
output (Variable): output Tensor
"""
batch_size, channels, in_height, in_width = input.size()
return GridSampler.apply(input, grid)
def affine_grid(theta, size):
"""Generates a 2d flow field, given a batch of affine matrices :attr:`theta`
Generally used in conjunction with :func:`grid_sample` to
implement Spatial Transformer Networks.
Args:
theta (Variable): input batch of affine matrices (N x 2 x 3)
size (torch.Size): the target output image size (N x C x H x W)
Example: torch.Size((32, 3, 24, 24))
Returns:
output (Variable): output Tensor of size (N x H x W x 2)
"""
return AffineGridGenerator.apply(theta, size)
def pad(input, pad, mode='constant', value=0):
"""Pads tensor.
Nd constant padding: The number of dimensions to pad is
len(padding) // 2 and the dimensions that gets padded begins with the
last dimension and moves forward. See below for examples.
1D, 2D and 3D "reflect"/"replicate" padding:
1D: 3D input with padding in form (pad_l, pad_r)
2D: 4D input tensor pad should be in form
(pad_l, pad_r, pad_t, pad_b ).
3D: 5D pad (pleft, pright, ptop, pbottom, pfront, pback). No "reflect"
implementation
Args:
input (Variable): Nd tensor
pad (tuple): m-elem tuple, where m // 2 > input dimensions and m % 2 == 0
mode: 'constant', 'reflect' or 'replicate'. Default: 'constant'
value: fill value for 'constant' padding. Default: 0
Examples::
>>> t4d = torch.Tensor(3, 3, 4, 2)
>>> p1d = (1, 1) # pad last dim by 1 on each side
>>> out = F.pad(t4d, p1d, "constant", 0)
>>> print(out.data.size())
torch.Size([3, 3, 4, 4])
>>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2)
>>> out = F.pad(t4d, p2d, "constant", 0)
>>> print(out.data.size())
torch.Size([3, 3, 8, 4])
>>> t4d = torch.Tensor(3, 3, 4, 2)
>>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3)
>>> out = F.pad(t4d, p3d, "constant", 0)
>>> print(out.data.size())
torch.Size([3, 9, 7, 3])
"""
assert len(pad) % 2 == 0, 'padding length must be divisible by 2'
assert len(pad) // 2 <= len(input.size()), 'padding length too large'
if mode == 'constant':
return ConstantPadNd.apply(input, pad, value)
elif input.dim() == 3:
assert len(pad) == 2, '3D tensors expect 2 values for padding'
if mode == 'reflect':
return _functions.thnn.ReflectionPad1d.apply(input, *pad)
elif mode == 'replicate':
return _functions.thnn.ReplicationPad1d.apply(input, *pad)
elif input.dim() == 4:
assert len(pad) == 4, '4D tensors expect 4 values for padding'
if mode == 'reflect':
return _functions.thnn.ReflectionPad2d.apply(input, *pad)
elif mode == 'replicate':
return _functions.thnn.ReplicationPad2d.apply(input, *pad)
elif input.dim() == 5:
assert len(pad) == 6, '5D tensors expect 6 values for padding'
if mode == 'reflect':
raise NotImplementedError
elif mode == 'replicate':
return _functions.thnn.ReplicationPad3d.apply(input, *pad)
else:
raise NotImplementedError("Only 3D, 4D, 5D padding with non-constant padding are supported for now")
# distance
def pairwise_distance(x1, x2, p=2, eps=1e-6):
r"""
Computes the batchwise pairwise distance between vectors v1,v2:
.. math ::
\Vert x \Vert _p := \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}
Args:
x1: first input tensor
x2: second input tensor
p: the norm degree. Default: 2
eps (float, optional): Small value to avoid division by zero. Default: 1e-6
Shape:
- Input: :math:`(N, D)` where `D = vector dimension`
- Output: :math:`(N, 1)`
Example::
>>> input1 = autograd.Variable(torch.randn(100, 128))
>>> input2 = autograd.Variable(torch.randn(100, 128))
>>> output = F.pairwise_distance(input1, input2, p=2)
>>> output.backward()
"""
assert x1.size() == x2.size(), "Input sizes must be equal."
assert x1.dim() == 2, "Input must be a 2D matrix."
diff = torch.abs(x1 - x2)
out = torch.pow(diff + eps, p).sum(dim=1, keepdim=True)
return torch.pow(out, 1. / p)
def cosine_similarity(x1, x2, dim=1, eps=1e-8):
r"""Returns cosine similarity between x1 and x2, computed along dim.
.. math ::
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}
Args:
x1 (Variable): First input.
x2 (Variable): Second input (of size matching x1).
dim (int, optional): Dimension of vectors. Default: 1
eps (float, optional): Small value to avoid division by zero.
Default: 1e-8
Shape:
- Input: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`.
- Output: :math:`(\ast_1, \ast_2)` where 1 is at position `dim`.
Example::
>>> input1 = autograd.Variable(torch.randn(100, 128))
>>> input2 = autograd.Variable(torch.randn(100, 128))
>>> output = F.cosine_similarity(input1, input2)
>>> print(output)
"""
w12 = torch.sum(x1 * x2, dim)
w1 = torch.norm(x1, 2, dim)
w2 = torch.norm(x2, 2, dim)
return (w12 / (w1 * w2).clamp(min=eps)).squeeze()
def triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-6, swap=False):
r"""Creates a criterion that measures the triplet loss given an input
tensors x1, x2, x3 and a margin with a value greater than 0.
This is used for measuring a relative similarity between samples. A triplet
is composed by `a`, `p` and `n`: anchor, positive examples and negative
example respectively. The shape of all input variables should be
:math:`(N, D)`.
The distance swap is described in detail in the paper `Learning shallow
convolutional feature descriptors with triplet losses`_ by
V. Balntas, E. Riba et al.
.. math::
L(a, p, n) = \frac{1}{N} \left( \sum_{i=1}^N \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\} \right)
where :math:`d(x_i, y_i) = \| {\bf x}_i - {\bf y}_i \|_2^2`.
Args:
anchor: anchor input tensor
positive: positive input tensor
negative: negative input tensor
margin: the margin value. Default: 1
p: the norm degree. Default: 2
eps: small epsilon value to avoid numerical issues. Default: 1e-6
swap: compute distance swap. Default: False
Shape:
- Input: :math:`(N, D)` where `D = vector dimension`
- Output: :math:`(N, 1)`
Example::
>>> input1 = autograd.Variable(torch.randn(100, 128))
>>> input2 = autograd.Variable(torch.randn(100, 128))
>>> input3 = autograd.Variable(torch.randn(100, 128))
>>> output = F.triplet_margin_loss(input1, input2, input3, p=2)
>>> output.backward()
.. _Learning shallow convolutional feature descriptors with triplet losses:
http://www.iis.ee.ic.ac.uk/%7Evbalnt/shallow_descr/TFeat_paper.pdf
"""
assert anchor.size() == positive.size(), "Input sizes between positive and negative must be equal."
assert anchor.size() == negative.size(), "Input sizes between anchor and negative must be equal."
assert positive.size() == negative.size(), "Input sizes between positive and negative must be equal."
assert anchor.dim() == 2, "Inputd must be a 2D matrix."
assert margin > 0.0, 'Margin should be positive value.'
d_p = pairwise_distance(anchor, positive, p, eps)
d_n = pairwise_distance(anchor, negative, p, eps)
if swap:
d_s = pairwise_distance(positive, negative, p, eps)
d_n = torch.min(d_n, d_s)
dist_hinge = torch.clamp(margin + d_p - d_n, min=0.0)
loss = torch.mean(dist_hinge)
return loss
def normalize(input, p=2, dim=1, eps=1e-12):
r"""Performs :math:`L_p` normalization of inputs over specified dimension.
Does:
.. math::
v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}
for each subtensor v over dimension dim of input. Each subtensor is
flattened into a vector, i.e. :math:`\lVert v \rVert_p` is not a matrix
norm.
With default arguments normalizes over the second dimension with Euclidean
norm.
Args:
input: input tensor of any shape
p (float): the exponent value in the norm formulation. Default: 2
dim (int): the dimension to reduce. Default: 1
eps (float): small value to avoid division by zero. Default: 1e-12
"""
return input / input.norm(p, dim, True).clamp(min=eps).expand_as(input)