| #include "caffe2/operators/tanh_op.h" |
| |
| #include <algorithm> |
| #include <functional> |
| |
| #include "caffe2/core/context_gpu.h" |
| |
| namespace caffe2 { |
| |
| namespace { |
| |
| template <typename T> |
| __global__ void TanhCUDAKernel(const int N, const T* X, T* Y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| #if __CUDA_ARCH__ >= 350 |
| Y[i] = tanh(__ldg(X + i)); |
| #else |
| Y[i] = tanh(X[i]); |
| #endif |
| } |
| } |
| |
| template <typename T> |
| __global__ void |
| TanhGradientCUDAKernel(const int N, const T* dY, const T* Y, T* dX) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| #if __CUDA_ARCH__ >= 350 |
| dX[i] = __ldg(dY + i) * (T(1) - __ldg(Y + i) * __ldg(Y + i)); |
| #else |
| dX[i] = dY[i] * (T(1) - Y[i] * Y[i]); |
| #endif |
| } |
| } |
| |
| } // namespace |
| |
| template <> |
| template <typename T> |
| bool TanhFunctor<CUDAContext>:: |
| operator()(const int N, const T* X, T* Y, CUDAContext* context) const { |
| TanhCUDAKernel<T> |
| <<<CAFFE_GET_BLOCKS(N), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(N, X, Y); |
| return true; |
| } |
| |
| template <> |
| template <typename T> |
| bool TanhGradientFunctor<CUDAContext>::Forward( |
| const std::vector<int>& dY_dims, |
| const std::vector<int>& /* Y_dims */, |
| const T* dY, |
| const T* Y, |
| T* dX, |
| CUDAContext* context) const { |
| const int size = std::accumulate( |
| dY_dims.cbegin(), dY_dims.cend(), 1, std::multiplies<int>()); |
| TanhGradientCUDAKernel<T> |
| <<<CAFFE_GET_BLOCKS(size), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(size, dY, Y, dX); |
| return true; |
| } |
| |
| REGISTER_CUDA_OPERATOR( |
| Tanh, |
| UnaryElementwiseOp< |
| TensorTypes<float>, |
| CUDAContext, |
| TanhFunctor<CUDAContext>>); |
| REGISTER_CUDA_OPERATOR( |
| TanhGradient, |
| BinaryElementwiseOp< |
| TensorTypes<float>, |
| CUDAContext, |
| TanhGradientFunctor<CUDAContext>>); |
| |
| } // namespace caffe2 |