blob: a15e6758d11bc39c7e3e14c9b8919aca5a2244b9 [file] [log] [blame]
#include "caffe2/operators/tanh_op.h"
#include <algorithm>
#include <functional>
#include "caffe2/core/context_gpu.h"
namespace caffe2 {
namespace {
template <typename T>
__global__ void TanhCUDAKernel(const int N, const T* X, T* Y) {
CUDA_1D_KERNEL_LOOP(i, N) {
#if __CUDA_ARCH__ >= 350
Y[i] = tanh(__ldg(X + i));
#else
Y[i] = tanh(X[i]);
#endif
}
}
template <typename T>
__global__ void
TanhGradientCUDAKernel(const int N, const T* dY, const T* Y, T* dX) {
CUDA_1D_KERNEL_LOOP(i, N) {
#if __CUDA_ARCH__ >= 350
dX[i] = __ldg(dY + i) * (T(1) - __ldg(Y + i) * __ldg(Y + i));
#else
dX[i] = dY[i] * (T(1) - Y[i] * Y[i]);
#endif
}
}
} // namespace
template <>
template <typename T>
bool TanhFunctor<CUDAContext>::
operator()(const int N, const T* X, T* Y, CUDAContext* context) const {
TanhCUDAKernel<T>
<<<CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, X, Y);
return true;
}
template <>
template <typename T>
bool TanhGradientFunctor<CUDAContext>::Forward(
const std::vector<int>& dY_dims,
const std::vector<int>& /* Y_dims */,
const T* dY,
const T* Y,
T* dX,
CUDAContext* context) const {
const int size = std::accumulate(
dY_dims.cbegin(), dY_dims.cend(), 1, std::multiplies<int>());
TanhGradientCUDAKernel<T>
<<<CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(size, dY, Y, dX);
return true;
}
REGISTER_CUDA_OPERATOR(
Tanh,
UnaryElementwiseOp<
TensorTypes<float>,
CUDAContext,
TanhFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
TanhGradient,
BinaryElementwiseOp<
TensorTypes<float>,
CUDAContext,
TanhGradientFunctor<CUDAContext>>);
} // namespace caffe2