blob: 7b4bbd4de87db881ac8baf3b3855ee93f6a32820 [file] [log] [blame]
#ifndef CAFFE2_OPERATORS_LOCALLY_CONNECTED_OP_H_
#define CAFFE2_OPERATORS_LOCALLY_CONNECTED_OP_H_
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/conv_op_shared.h"
#include "caffe2/operators/conv_pool_op_base.h"
#include "caffe2/operators/locally_connected_op_util.h"
namespace caffe2 {
template <typename T, class Context>
class LocallyConnectedOp final : public ConvPoolOpBase<Context> {
public:
USE_CONV_POOL_BASE_FUNCTIONS(Context);
LocallyConnectedOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<Context>(operator_def, ws) {
// Since this is the default locally connected implementation, we will
// use CAFFE_ENFORCE instead of OPERATOR_NEEDS_FEATURE.
CAFFE_ENFORCE(
group_ == 1 || order_ == StorageOrder::NCHW,
"Group locally connected only supports NCHW order right now.");
}
~LocallyConnectedOp() = default;
bool RunOnDeviceWithOrderNCHW() override;
bool RunOnDeviceWithOrderNHWC() override;
private:
void RunOnDeviceWithOrderNCHWImpl(
const lc_op_util::ShapeParams& shape,
const T* X_data,
const T* filter_data,
const T* bias_data,
T* Y_data,
Tensor<Context>* column_buffer,
Tensor<Context>* column_transposed_buffer,
Tensor<Context>* output_buffer);
void RunOnDeviceWithOrderNHWCImpl(
const lc_op_util::ShapeParams& shape,
const T* X_data,
const T* filter_data,
const T* bias_data,
T* Y_data,
Tensor<Context>* column_buffer,
Tensor<Context>* column_transposed_buffer,
Tensor<Context>* Y_transposed_buffer);
Tensor<Context> bias_multiplier_;
// Buffer.
Tensor<Context> column_buffer_;
Tensor<Context> column_transposed_buffer_;
Tensor<Context> Y_transposed_buffer_;
// Input: X, W, b
// Output: Y
INPUT_TAGS(INPUT, FILTER, BIAS);
};
template <typename T, class Context>
class LocallyConnectedGradientOp final : public ConvPoolOpBase<Context> {
public:
USE_CONV_POOL_BASE_FUNCTIONS(Context);
LocallyConnectedGradientOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<Context>(operator_def, ws),
OP_SINGLE_ARG(bool, "no_bias", no_bias_, false) {
CAFFE_ENFORCE(
!(no_bias_ && OutputSize() == 3),
"If bias is not present, you should not have 3 grad output.");
CAFFE_ENFORCE(
group_ == 1 || order_ == StorageOrder::NCHW,
"Group locally connected only supports NCHW order right now.");
}
~LocallyConnectedGradientOp() = default;
bool RunOnDeviceWithOrderNCHW() override;
bool RunOnDeviceWithOrderNHWC() override;
private:
void RunOnDeviceWithOrderNCHWImpl(
const lc_op_util::ShapeParams& shape,
const T* X_data,
const T* filter_data,
const T* dY_data,
T* dfilter_data,
T* dX_data,
T* dbias_data,
Tensor<Context>* column_buffer,
Tensor<Context>* column_transposed_buffer,
Tensor<Context>* dY_transposed_buffer);
void RunOnDeviceWithOrderNHWCImpl(
const lc_op_util::ShapeParams& shape,
const T* X_data,
const T* filter_data,
const T* dY_data,
T* dfilter_data,
T* dX_data,
T* dbias_data,
Tensor<Context>* column_buffer,
Tensor<Context>* column_transposed_buffer,
Tensor<Context>* dY_transposed_buffer);
const bool no_bias_;
Tensor<Context> bias_multiplier_;
// Buffer.
Tensor<Context> column_buffer_;
Tensor<Context> column_transposed_buffer_;
Tensor<Context> dY_transposed_buffer_;
// input: X, W, dY
// output: dW, db, and optionally dX
INPUT_TAGS(INPUT, FILTER, OUTPUT_GRAD);
OUTPUT_TAGS(FILTER_GRAD, BIAS_OR_INPUT_GRAD, INPUT_GRAD);
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_LOCALLY_CONNECTED_OP_H_