| #include "caffe2/core/context_gpu.h" |
| #include "caffe2/operators/leaky_relu_op.h" |
| |
| #include "caffe2/utils/math.h" |
| |
| namespace caffe2 { |
| namespace { |
| template <typename T> |
| __global__ void LeakyReluKernel(const int N, const T alpha, const T* X, T* Y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| Y[i] = X[i] >= 0 ? X[i] : X[i] * alpha; |
| } |
| } |
| |
| template <typename T> |
| __global__ void LeakyReluGradientKernel( |
| const int N, |
| const T alpha, |
| const T* Y, |
| const T* dY, |
| T* dX) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| dX[i] = Y[i] >= 0 ? dY[i] : dY[i] * alpha; |
| } |
| } |
| } // namespace |
| |
| template <> |
| bool LeakyReluOp<float, CUDAContext>::RunOnDevice() { |
| const auto& X = Input(0); |
| CAFFE_ENFORCE_GT(X.size(), 0); |
| auto* Y = Output(0); |
| Y->ResizeLike(X); |
| LeakyReluKernel<<< |
| CAFFE_GET_BLOCKS(X.size()), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| X.size(), alpha_, X.data<float>(), Y->mutable_data<float>()); |
| return true; |
| } |
| |
| template <> |
| bool LeakyReluGradientOp<float, CUDAContext>::RunOnDevice() { |
| const auto& Y = Input(0); |
| const auto& dY = Input(1); |
| auto* dX = Output(0); |
| dX->ResizeLike(Y); |
| CAFFE_ENFORCE_EQ(Y.size(), dY.size()); |
| LeakyReluGradientKernel<<< |
| CAFFE_GET_BLOCKS(Y.size()), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| Y.size(), |
| alpha_, |
| Y.data<float>(), |
| dY.data<float>(), |
| dX->mutable_data<float>()); |
| return true; |
| } |
| |
| REGISTER_CUDA_OPERATOR(LeakyRelu, LeakyReluOp<float, CUDAContext>); |
| REGISTER_CUDA_OPERATOR( |
| LeakyReluGradient, |
| LeakyReluGradientOp<float, CUDAContext>); |
| } // namespace caffe2 |