blob: df9d8ae2ae6474fd15fc86d226af410d914a22bc [file] [log] [blame]
#include "Python.h"
#include "accumulate_grad.h"
#include "basic_ops.h"
#include "tensor.h"
#include "special.h"
#include "torch/csrc/jit/interpreter_autograd_function.h"
#include "torch/csrc/autograd/functions/pybind.h"
#include "torch/csrc/autograd/python_cpp_function.h"
#include "torch/csrc/autograd/generated/python_functions.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/utils/pybind.h"
#include "torch/csrc/utils/tuple_parser.h"
using namespace torch::autograd;
using torch::TupleParser;
struct DelayedErrorCtor {
DelayedError* operator()(PyObject* args) {
std::string msg;
TupleParser parser(args, 1);
parser.parse(msg, "msg");
return new DelayedError(msg);
}
};
struct NoCtor {
Function* operator()(PyObject* args) {
throw std::runtime_error("Cannot construct");
}
};
template<typename C, typename T>
static void addClass(PyObject* module, PyTypeObject& type, const char* name,
PyGetSetDef* function_properties=NULL, PyMethodDef* function_methods=NULL)
{
createForwardFunctionPyTypeObject<T>(type, name, function_properties, function_methods);
Py_INCREF(&type);
PyModule_AddObject(module, name, (PyObject*)&type);
registerCppFunction(typeid(C), &type);
}
template<typename T, typename ValueT, typename ParamsT, ValueT ParamsT::*ptr,
typename ConvertArgT, PyObject* (*Convert)(ConvertArgT)>
PyObject* getTupleAttr(PyObject* obj, void* _unused)
{
HANDLE_TH_ERRORS
THPCppFunction* self = (THPCppFunction*)obj;
auto& arr = ((T*)(self->cdata.get()))->*ptr;
auto num_elems = arr.size();
THPObjectPtr py_tuple(PyTuple_New(num_elems));
if (!py_tuple) return NULL;
for (size_t i = 0; i < num_elems; ++i) {
PyTuple_SET_ITEM(py_tuple.get(), i, Convert(arr[i]));
}
return py_tuple.release();
END_HANDLE_TH_ERRORS
}
template<typename T, typename ValueT, typename ParamsT, ValueT ParamsT::*ptr,
typename ConvertArgT, PyObject* (*Convert)(ConvertArgT)>
PyObject* getValueAttr(PyObject* obj, void* _unused)
{
HANDLE_TH_ERRORS
THPCppFunction* self = (THPCppFunction*)obj;
auto& val = ((T*)(self->cdata.get()))->*ptr;
return Convert(val);
END_HANDLE_TH_ERRORS
}
template<typename T, typename ParamsT, at::Tensor ParamsT::*ptr>
PyObject* getTensorAttr(PyObject* obj, void* _unused)
{
HANDLE_TH_ERRORS
THPCppFunction* self = (THPCppFunction*)obj;
auto& val = ((T*)(self->cdata.get()))->*ptr;
THPObjectPtr py_tensor;
if (!val.defined()) {
Py_INCREF(Py_None);
py_tensor = Py_None;
} else {
py_tensor = torch::createPyObject(val);
}
return py_tensor.release();
END_HANDLE_TH_ERRORS
}
static PyObject* accumulateGradVar(PyObject *_self, void* _unused)
{
THPCppFunction* self = (THPCppFunction*)_self;
auto grad_acc = (AccumulateGrad*)self->cdata.get();
return THPVariable_Wrap(grad_acc->variable);
}
static struct PyGetSetDef accumulate_grad_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
{(char*)"variable", accumulateGradVar, NULL, NULL, NULL},
{NULL}
};
bool THPAutograd_initFunctions(PyObject* _unused)
{
THPObjectPtr module(PyModule_New("torch._C._functions"));
if (!module) return false;
static PyTypeObject AccumulateGradClass;
addClass<AccumulateGrad, NoCtor>(module, AccumulateGradClass, "AccumulateGrad", accumulate_grad_properties);
static PyTypeObject ErrorClass;
addClass<Error, NoCtor>(module, ErrorClass, "Error");
static PyTypeObject DelayedErrorClass;
addClass<DelayedError, DelayedErrorCtor>(module, DelayedErrorClass, "DelayedError");
static PyTypeObject EvalClass;
addClass<Eval, NoCtor>(module, EvalClass, "Eval");
static PyTypeObject InterpreterAutogradClass;
addClass<torch::jit::InterpreterAutogradFunction, NoCtor>(module, InterpreterAutogradClass, "InterpreterAutogradFunction");
static PyTypeObject CopyBackwardsClass;
addClass<CopyBackwards, NoCtor>(module, CopyBackwardsClass, "CopyBackwards");
static PyTypeObject CopySlicesClass;
addClass<CopySlices, NoCtor>(module, CopySlicesClass, "CopySlices");
generated::initialize_autogenerated_functions();
THPObjectPtr parent(PyImport_ImportModule("torch._C"));
if (!parent) return false;
PyModule_AddObject(parent.get(), "_functions", module.release());
return true;
}
namespace torch { namespace autograd {
void initAutogradClosureBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::class_<jit::InterpreterFunctionFactory,std::shared_ptr<jit::InterpreterFunctionFactory>>(m, "InterpreterFunctionFactory")
.def("__call__", &jit::InterpreterFunctionFactory::construct)
;
m.def("_jit_createInterpreterFactory", [](jit::tracer::TracingState* tracing_state) {
return std::make_shared<jit::InterpreterFunctionFactory>(tracing_state);
});
}
}}