| from .module import Module |
| from .. import functional as F |
| from ..._jit_internal import weak_module, weak_script_method |
| |
| |
| @weak_module |
| class PairwiseDistance(Module): |
| r""" |
| Computes the batchwise pairwise distance between vectors :math:`v_1`, :math:`v_2` using the p-norm: |
| |
| .. math :: |
| \Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p} |
| |
| Args: |
| p (real): the norm degree. Default: 2 |
| eps (float, optional): Small value to avoid division by zero. |
| Default: 1e-6 |
| keepdim (bool, optional): Determines whether or not to keep the batch dimension. |
| Default: False |
| |
| Shape: |
| - Input1: :math:`(N, D)` where `D = vector dimension` |
| - Input2: :math:`(N, D)`, same shape as the Input1 |
| - Output: :math:`(N)`. If :attr:`keepdim` is ``False``, then :math:`(N, 1)`. |
| |
| Examples:: |
| |
| >>> pdist = nn.PairwiseDistance(p=2) |
| >>> input1 = torch.randn(100, 128) |
| >>> input2 = torch.randn(100, 128) |
| >>> output = pdist(input1, input2) |
| """ |
| __constants__ = ['norm', 'eps', 'keepdim'] |
| |
| def __init__(self, p=2., eps=1e-6, keepdim=False): |
| super(PairwiseDistance, self).__init__() |
| self.norm = p |
| self.eps = eps |
| self.keepdim = keepdim |
| |
| @weak_script_method |
| def forward(self, x1, x2): |
| return F.pairwise_distance(x1, x2, self.norm, self.eps, self.keepdim) |
| |
| |
| @weak_module |
| class CosineSimilarity(Module): |
| r"""Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along dim. |
| |
| .. math :: |
| \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)} |
| |
| Args: |
| dim (int, optional): Dimension where cosine similarity is computed. Default: 1 |
| eps (float, optional): Small value to avoid division by zero. |
| Default: 1e-8 |
| |
| Shape: |
| - Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim` |
| - Input2: :math:`(\ast_1, D, \ast_2)`, same shape as the Input1 |
| - Output: :math:`(\ast_1, \ast_2)` |
| |
| Examples:: |
| |
| >>> input1 = torch.randn(100, 128) |
| >>> input2 = torch.randn(100, 128) |
| >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6) |
| >>> output = cos(input1, input2) |
| """ |
| __constants__ = ['dim', 'eps'] |
| |
| def __init__(self, dim=1, eps=1e-8): |
| super(CosineSimilarity, self).__init__() |
| self.dim = dim |
| self.eps = eps |
| |
| @weak_script_method |
| def forward(self, x1, x2): |
| return F.cosine_similarity(x1, x2, self.dim, self.eps) |