blob: ef2e48d8ee9f4928308e36e3af47a983188868d2 [file] [log] [blame]
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import torch
from torch.distributed.pipelining import pipe_split, pipeline
from torch.testing._internal.common_utils import run_tests, TestCase
# Building block for model
class Block(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=16, out_channels=16, kernel_size=3, padding=1
)
self.lin0 = torch.nn.Linear(256, 256)
self.relu = torch.nn.ReLU()
self.lin1 = torch.nn.Linear(256, 256)
def forward(self, x: torch.Tensor, constant=None) -> torch.Tensor:
x = self.conv(x)
x = self.lin0(x)
pipe_split()
x.add_(constant)
x = self.lin1(x)
return self.relu(x)
# Full model
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.block0 = Block()
self.block1 = Block()
def forward(self, x: torch.Tensor, constant=None) -> torch.Tensor:
x = self.block0(x, constant=constant)
pipe_split()
x = self.block1(x, constant=constant)
return x
class UnflattenTests(TestCase):
def test_unflatten(self):
x = torch.randn(1, 16, 256, 256)
constant = torch.ones(1, 16, 256, 256)
mod = M()
pipe = pipeline(
mod,
(x,),
{"constant": constant},
)
assert pipe.num_stages == 4
orig_state_dict = mod.state_dict()
# Check qualnames
for stage_idx in range(pipe.num_stages):
stage_mod = pipe.get_stage_module(stage_idx)
for param_name, param in stage_mod.named_parameters():
assert (
param_name in orig_state_dict
), f"{param_name} not in original state dict"
print("Param qualname test passed")
# Check equivalence
ref = mod(x, constant)
out = pipe(x, constant)[0]
torch.testing.assert_close(out, ref)
print(f"Equivalence test passed {torch.sum(out)} ref {torch.sum(ref)}")
if __name__ == "__main__":
run_tests()