blob: 5d40b4aab834414db34b093774e92ffe2f76d36c [file] [log] [blame]
#include "torch/csrc/jit/script/init.h"
#include "torch/csrc/Device.h"
#include "torch/csrc/Dtype.h"
#include "torch/csrc/Layout.h"
#include "torch/csrc/jit/import.h"
#include "torch/csrc/jit/script/compiler.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/jit/pybind_utils.h"
#include "torch/csrc/jit/constants.h"
#include "torch/csrc/jit/passes/to_batch.h"
#include "torch/csrc/jit/function_schema.h"
#include "torch/csrc/jit/script/parser.h"
#include "torch/csrc/jit/import_method.h"
#include "torch/csrc/jit/hooks_for_testing.h"
#include <torch/csrc/api/include/torch/ordered_dict.h>
#include <ATen/ATen.h>
#include <cstddef>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include <pybind11/functional.h>
namespace torch {
namespace jit {
namespace script {
using ResolutionCallback = std::function<py::function(std::string)>;
using FunctionDefaults = std::unordered_map<std::string, py::object>;
static std::string typeString(py::handle h) {
return py::str(h.get_type().attr("__name__"));
}
inline std::shared_ptr<SugaredValue> toSimple(Value* v) {
return std::make_shared<SimpleValue>(v);
}
// NB: This should be the single entry-point for instantiating a SugaredValue
// from a Python object. If you are adding support for converting a new Python
// type, *add it in this function's implementation*.
std::shared_ptr<SugaredValue> toSugaredValue(
py::object obj,
Method& m,
SourceRange loc,
bool is_constant = false,
bool is_submodule = false);
struct VISIBILITY_HIDDEN PythonValue : public SugaredValue {
PythonValue(py::object self)
: self(std::move(self)) {}
FunctionSchema getSchema(const size_t n_args, const size_t n_binders) {
auto annotations = py::module::import("torch.jit.annotations");
auto signature = annotations.attr("get_signature")(self);
std::vector<Argument> args, rets;
// We may mutate this if we can determine the number of args from Python
// introspection.
size_t actual_n_args = n_args;
if (!signature.is_none()) {
std::vector<TypePtr> arg_types;
TypePtr ret_type;
std::tie(arg_types, ret_type) = py::cast<std::pair<std::vector<TypePtr>, TypePtr>>(signature);
args.reserve(arg_types.size());
size_t idx = 0; // Fake argument names by putting in the index
for (auto &arg_type : arg_types) {
args.push_back(Argument(std::to_string(idx++), std::move(arg_type), {}, {}, false));
}
rets.push_back(Argument("0", std::move(ret_type), {}, {}, false));
} else {
// Create a default signature using what information we have
// First see if we can introspect the number of function parameters
// irrespective of the presence of explicit type annotations
auto num_params = annotations.attr("get_num_params")(self);
if (!num_params.is_none()) {
// Return a signature with the correct number of params according to the
// Python function. The error handling in call() will catch any mismatch
// later.
actual_n_args = py::cast<size_t>(num_params);
}
// Construct the default signature: all arguments and returns will be
// DynamicType
args.reserve(actual_n_args);
for (size_t i=0; i < actual_n_args; ++i) {
args.push_back(Argument(std::to_string(i), DynamicType::get(), {}, {}, false));
}
TypePtr ret_type = DynamicType::get();
if(n_binders != 1) {
std::vector<TypePtr> tuple_values(n_binders, ret_type);
ret_type = TupleType::create(std::move(tuple_values));
}
rets.push_back(Argument("0", ret_type, {}, {}, false));
}
return FunctionSchema("", std::move(args), std::move(rets));
}
// call it like a function, e.g. `outputs = this(inputs)`
virtual std::shared_ptr<SugaredValue> call(SourceRange loc, Method & m, at::ArrayRef<NamedValue> inputs_, at::ArrayRef<NamedValue> attributes, size_t n_binders) override {
auto inputs = toValues(*m.graph(), inputs_);
auto schema = getSchema(inputs.size(), n_binders);
std::stringstream failure_messages;
c10::optional<MatchedSchema> matched_schema =
tryMatchSchema(schema, loc, *m.graph(), c10::nullopt, inputs_, attributes, failure_messages, /*conv_tensor_to_num*/true);
if (!matched_schema)
throw ErrorReport(loc) << failure_messages.str();
// Release the function object so we can wrap it in a PythonOp
py::object func = self;
std::string cconv(inputs.size(), 'd');
Node* new_node = m.graph()->insertNode(m.graph()->createPythonOp(
THPObjectPtr(func.release().ptr()), cconv, {}));
new_node->setSourceLocation(std::make_shared<SourceRange>(loc));
for(auto &i : matched_schema->inputs)
new_node->addInput(i);
std::vector<Value*> outputs;
for(auto & ret_arg : matched_schema->return_types) {
outputs.push_back(new_node->addOutput()->setType(ret_arg));
}
return std::make_shared<SimpleValue>(packOutputs(*m.graph(), outputs));
}
virtual std::string kind() const override {
std::stringstream ss;
ss << "python value of type '" << typeString(self) << "'";
return ss.str();
}
protected:
py::object getattr(SourceRange loc, const std::string& name) {
try {
return py::getattr(self, name.c_str());
} catch (py::error_already_set& e) {
throw ErrorReport(loc) << "object has no attribute " << name;
}
}
py::object self;
};
struct VISIBILITY_HIDDEN PythonModuleValue : public PythonValue {
explicit PythonModuleValue(py::object mod) : PythonValue(mod) {}
std::shared_ptr<SugaredValue> attr(
SourceRange loc,
Method& m,
const std::string& field) override {
py::object member = getattr(loc, field);
// note: is_constant = true because we consider that global properties
// on modules like math.pi or torch.float to be constants
// eventhough it is possible, though rare, for someone to mutate them
return toSugaredValue(member, m, loc, /*is_constant=*/true);
}
};
struct VISIBILITY_HIDDEN ConstantPythonTupleValue : public PythonValue {
explicit ConstantPythonTupleValue(py::object tup) : PythonValue(tup) {}
std::vector<std::shared_ptr<SugaredValue>> asTuple(
SourceRange loc,
Method& m,
c10::optional<size_t> size_hint = {}) override {
py::tuple tup = self;
std::vector<std::shared_ptr<SugaredValue>> result;
result.reserve(tup.size());
for (size_t i = 0; i < tup.size(); ++i) {
result.push_back(toSugaredValue(tup[i], m, loc, true));
}
return result;
}
Value* asValue(
SourceRange loc,
Method& m) override {
std::vector<Value*> values;
for (auto sugared_item : asTuple(loc, m)) {
values.push_back(sugared_item->asValue(loc, m));
}
auto node = m.graph()->createTuple(values);
return m.graph()->insertNode(node)->output();
}
};
// defines how modules/methods behave inside the script subset.
// for now this does not have any interaction with python.
// in the future, we will add the ability to resolve `self.foo` to python
// {functions, modules, contants} so this SugaredValue is defined here
// anticipating we will eventually need to replace Module with a py::object
// holding the actual nn.Module class.
struct ModuleValue : public SugaredValue {
ModuleValue(std::shared_ptr<Module> module)
: module(std::move(module)) {}
virtual std::string kind() const override {
return "module";
}
// select an attribute on it, e.g. `this.field`
virtual std::shared_ptr<SugaredValue> attr(SourceRange loc, Method & m, const std::string& field) override {
if(NamedModule* v = module->find_module(field)) {
return std::make_shared<ModuleValue>(v->module);
} else if(Method* v = module->find_method(field)) {
return std::make_shared<MethodValue>(module, *v);
} else if(NamedParameter* v = module->find_parameter(field)) {
return std::make_shared<SimpleValue>(m.get_or_add_parameter(v->slot()));
}
// This can also be a call to a non-script module, or a plain
// python method. If so return this as a python value.
py::object py_module = py::cast(module);
if(py::object attr = py::getattr(py_module, field.c_str(), py::none())) {
if (py::isinstance<py::function>(attr) ||
py::isinstance(attr, py::module::import("torch.nn").attr("Module")) ||
py_module.attr("_constants_set").contains(field.c_str())) {
return toSugaredValue(attr, m, loc, true);
} else {
throw ErrorReport(loc) << "attribute '" << field << "' of type '" << typeString(attr) << "' is not usable in a script method (did you forget to add it __constants__?)";
}
}
throw ErrorReport(loc) << "module has no attribute '" << field << "'";
}
// call module.forward
virtual std::shared_ptr<SugaredValue> call(SourceRange loc, Method & caller, at::ArrayRef<NamedValue> inputs, at::ArrayRef<NamedValue> attributes, size_t n_binders) override {
return attr(loc, caller, "forward")->call(loc, caller, inputs, attributes, n_binders);
}
virtual std::vector<std::shared_ptr<SugaredValue>> asTuple(
SourceRange loc,
Method& m,
c10::optional<size_t> size_hint = {}) override {
py::object py_module = py::cast(module);
if(!py::isinstance(py_module, py::module::import("torch.jit").attr("_ConstModuleList")))
return SugaredValue::asTuple(loc, m, size_hint);
std::vector<std::shared_ptr<SugaredValue>> result;
for(py::handle module : py_module) {
py::object obj = py::reinterpret_borrow<py::object>(module);
result.push_back(toSugaredValue(
obj,
m,
loc,
/*is_constant =*/false,
/*is_submodule =*/true));
}
return result;
}
private:
std::shared_ptr<Module> module;
};
struct VISIBILITY_HIDDEN BooleanDispatchValue : public SugaredValue {
BooleanDispatchValue(py::dict dispatched_fn)
: dispatched_fn_(std::move(dispatched_fn)) {}
std::string kind() const override {
return "boolean dispatch";
}
std::vector<NamedValue> removeIndex(
at::ArrayRef<NamedValue> arr,
size_t index) {
auto sliced = arr.vec();
sliced.erase(sliced.begin() + index);
return sliced;
}
std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method& caller,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
c10::optional<bool> result;
Graph& graph = *(caller.graph());
auto index = py::cast<size_t>(dispatched_fn_["index"]);
auto arg_name = py::str(dispatched_fn_["arg_name"]);
if (index < inputs.size()) {
// Dispatch flag is in arg list
result = constant_as<bool>(inputs.at(index).value(graph));
} else if (auto i = findInputWithName(arg_name, attributes)) {
// Dispatch flag is in kwargs
result = constant_as<bool>(attributes[*i].value(graph));
} else {
// Didn't find dispatch flag, so use default value
result = py::cast<bool>(dispatched_fn_["default"]);
}
if (!result) {
throw ErrorReport(loc) << "value for boolean dispatch was not constant";
}
std::shared_ptr<SugaredValue> value;
if (*result) {
value = toSugaredValue(dispatched_fn_["if_true"], caller, loc);
} else {
value = toSugaredValue(dispatched_fn_["if_false"], caller, loc);
}
return value->call(loc, caller, inputs, attributes, n_binders);
}
private:
py::dict dispatched_fn_;
};
std::shared_ptr<SugaredValue> toSugaredValue(
py::object obj,
Method& m,
SourceRange loc,
bool is_constant,
bool is_submodule) {
// directly create SimpleValues when possible, because they are first-class
// and can be re-assigned. Otherwise, this would be invalid:
// f = python_constant
// while ...
// f = f + 1
auto& g = *m.graph();
if (is_constant) {
if (py::isinstance<py::bool_>(obj)) {
return toSimple(g.insertConstant(py::cast<bool>(obj), loc));
} else if (py::isinstance<py::int_>(obj)) {
return toSimple(g.insertConstant(py::cast<int64_t>(obj), loc));
} else if (py::isinstance<py::float_>(obj)) {
return toSimple(g.insertConstant(py::cast<float>(obj), loc));
} else if (THPDevice_Check(obj.ptr())) {
auto device = (THPDevice*)obj.ptr();
std::vector<int64_t> v = {static_cast<int64_t>(device->device.type()),
device->device.index()};
return toSimple(g.insertConstant(std::move(v)));
} else if (THPLayout_Check(obj.ptr())) {
auto layout = (THPLayout*)obj.ptr();
const auto v = static_cast<int64_t>(layout->layout);
return toSimple(g.insertConstant(v, loc));
} else if (THPDtype_Check(obj.ptr())) {
auto dtype = (THPDtype*)(obj.ptr());
const auto v = static_cast<int64_t>(dtype->scalar_type);
return toSimple(g.insertConstant(v, loc));
} else if (py::isinstance<py::tuple>(obj)) {
return std::make_shared<ConstantPythonTupleValue>(obj);
}
}
auto weak_obj =
py::module::import("torch.jit").attr("_try_get_weak_module")(obj);
if (!weak_obj.is_none()) {
obj = weak_obj;
}
if (py::isinstance<Module>(obj)) {
auto mod = py::cast<std::shared_ptr<Module>>(obj);
// In the case that this Python object is not a submodule, inline *ONLY
// PURE* ScriptModules. This allows us to call arbitrary @script functions
// within a scripting context while still enforcing that parameters from
// stateful submodules are properly accounted for.
if (!is_submodule && mod->get_parameters().size() != 0) {
throw ErrorReport()
<< "Attempted to inline a Module with parameters. "
"Stateful modules to be inlined must be submodules of the callee.";
}
return std::make_shared<ModuleValue>(mod);
} else if (py::isinstance<py::module>(obj)) {
return std::make_shared<PythonModuleValue>(obj);
} else if (obj.ptr() == py::module::import("torch.jit").attr("_fork").ptr()) {
return std::make_shared<ForkValue>();
} else if (obj.ptr() == py::module::import("torch.jit").attr("annotate").ptr()) {
return std::make_shared<AnnotateValue>();
}
py::object builtin_name = py::module::import("torch.jit").attr("_find_builtin")(obj);
if (!builtin_name.is_none()) {
return std::make_shared<BuiltinFunction>(
Symbol::fromQualString(py::str(builtin_name)), c10::nullopt);
}
if (py::isinstance<py::function>(obj)) {
auto compiled_fn =
py::module::import("torch.jit").attr("_try_compile_weak_script")(obj);
if (!compiled_fn.is(py::none())) {
auto mod = py::cast<std::shared_ptr<Module>>(compiled_fn);
return std::make_shared<ModuleValue>(mod);
}
}
py::object dispatched_fn =
py::module::import("torch.jit").attr("_try_get_dispatched_fn")(obj);
if (!dispatched_fn.is_none()) {
return std::make_shared<BooleanDispatchValue>(std::move(dispatched_fn));
}
return std::make_shared<PythonValue>(obj);
}
py::object unpackVariableTensorList(std::vector<at::Tensor> outputs) {
// if we don't tell pybind these are variables it chokes on the
// conversion.
// TODO: fix conversions to be sane and make sure this works.
if (outputs.size() == 0) {
return py::none();
} else if (outputs.size() == 1) {
return py::cast(autograd::as_variable_ref(outputs[0]));
} else {
py::tuple tuple(outputs.size());
for(size_t i = 0; i < outputs.size(); i++) {
tuple[i] = py::cast(autograd::as_variable_ref(outputs[i]));
}
return tuple;
}
}
static void gatherParametersAndBuffers(std::vector<at::Tensor*> & values, const Module & m) {
for(auto & param : m.get_parameters()) {
values.push_back(param->slot());
}
for(const auto & sub : m.get_modules()) {
gatherParametersAndBuffers(values, *sub->module);
}
}
namespace {
Resolver pythonResolver(ResolutionCallback rcb) {
return [rcb](const std::string& name, Method& m, const SourceRange& loc)
-> std::shared_ptr<SugaredValue> {
AutoGIL ag;
py::object obj = rcb(name);
if (obj.is(py::none())) {
return nullptr;
}
return toSugaredValue(obj, m, loc);
};
}
}
FunctionSchema getSchemaWithNameAndDefaults(
const SourceRange& range,
const FunctionSchema schema,
at::optional<std::string> new_name,
const FunctionDefaults& default_args) {
std::vector<Argument> new_args;
for (auto& arg : schema.arguments()) {
auto it = default_args.find(arg.name());
if (it != default_args.end()) {
try {
IValue value = toIValue(it->second, arg.type());
new_args.push_back(
Argument(arg.name(), arg.type(), arg.N(), value, arg.kwarg_only()));
} catch (py::cast_error& e) {
throw ErrorReport(range)
<< "Expected a default value of type " << arg.type()->str()
<< " on parameter \"" << arg.name() << "\"";
}
} else {
new_args.push_back(arg);
}
}
return FunctionSchema(
new_name.value_or(schema.name()),
new_args,
schema.returns(),
schema.is_vararg(),
schema.is_varret());
}
void initJitScriptBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
// torch.jit.ScriptModule is a subclass of this C++ object.
// Methods here are prefixed with _ since they should not be
// public.
py::class_<Module, std::shared_ptr<Module>>(m, "ScriptModule")
.def(py::init<>())
.def("save", [](std::shared_ptr<Module> m, const std::string& filename) {
m->save(filename);
})
.def("save_to_buffer", [](std::shared_ptr<Module> m) {
std::ostringstream buf;
m->save(buf);
return py::bytes(buf.str());
})
.def("_set_optimized", &Module::set_optimized)
.def(
"_define",
[](std::shared_ptr<Module> m,
const std::string& script,
ResolutionCallback rcb, bool has_self) {
auto self = has_self ? std::make_shared<ModuleValue>(m) : nullptr;
return defineMethodsInModule(m, script, pythonResolver(rcb), self);
})
.def("_create_methods", [](std::shared_ptr<Module> m,
const std::vector<Def>& defs,
const std::vector<ResolutionCallback>& rcbs,
const std::vector<FunctionDefaults>& defaults) {
std::vector<Resolver> resolvers;
for(auto & callback : rcbs) {
resolvers.push_back(pythonResolver(callback));
}
defineMethodsInModule(
m,
defs,
resolvers,
std::make_shared<ModuleValue>(m));
// Stitch in default arguments for each Def if provided
auto defaults_it = defaults.begin();
auto defs_it = defs.begin();
while (defs_it != defs.end()) {
auto& method = m->get_method((*defs_it).name().name());
method.setSchema(getSchemaWithNameAndDefaults(
defs_it->range(), method.getSchema(), at::nullopt, *defaults_it));
++defs_it;
++defaults_it;
}
})
.def("_get_method",
[](Module& self, const std::string& name) -> const Method& {
return self.get_method(name);
}, py::return_value_policy::reference_internal)
.def("_register_parameter", &Module::register_parameter)
.def("_register_module", &Module::register_module)
.def("_set_parameter", &Module::set_parameter)
.def("_get_parameter", &Module::get_parameter)
.def("_get_module", &Module::get_module)
.def("_get_modules", [](Module& self) -> py::tuple {
auto & modules = self.get_modules();
py::tuple result(modules.size());
for(size_t i = 0; i < modules.size(); ++i) {
auto & item = modules[i];
result[i] = std::make_pair(item.key(), item.value());
}
return result;
})
.def("_get_parameters", [](Module& self) -> py::tuple {
auto & parameters = self.get_parameters();
py::tuple result(parameters.size());
for(size_t i = 0; i < parameters.size(); ++i) {
auto & p = parameters[i];
py::tuple r(3);
result[i] = std::make_tuple(
p.key(),
autograd::as_variable_ref(*p->slot()),
p->is_buffer);
}
return result;
})
.def("_has_parameter", [](Module& self, const std::string& name) {
if(auto r = self.find_parameter(name)) {
return !r->is_buffer;
}
return false;
})
.def("_has_buffer", [](Module& self, const std::string& name) {
if(auto r = self.find_parameter(name)) {
return r->is_buffer;
}
return false;
})
.def("_has_module", [](Module& self, const std::string& name) {
return bool(self.find_module(name));
})
.def("_has_method", [](Module& self, const std::string& name) {
return bool(self.find_method(name));
})
.def("_method_names", [](Module& self) {
using Item = torch::OrderedDict<std::string, std::unique_ptr<Method>>::Item;
return fmap(self.get_methods(), [](const Item & item) {
return (*item)->name();
});
})
.def("_create_method_from_graph", [](
Module& self,
const std::string& name,
std::shared_ptr<Graph> graph
){
self.create_method(name, std::move(graph), {});
})
.def("_create_method_from_trace", [](
std::shared_ptr<Module> self,
const std::string& name,
py::function func,
py::tuple input_tuple,
py::function var_lookup_fn) {
// prereq: Module's buffers and parameters are unique
// this was ensured in python before calling this function
std::vector<at::Tensor*> parameters;
gatherParametersAndBuffers(parameters, *self);
Stack inputs = toStack(input_tuple);
for(at::Tensor* param : parameters) {
inputs.emplace_back(*param);
}
auto graph = tracer::createGraphByTracing(func, inputs, var_lookup_fn, input_tuple.size());
self->create_method(name, std::move(graph), std::move(parameters));
didFinishEmitModule(self);
})
.def("graph_for", [](py::args args, py::kwargs kwargs) {
// [pybind11 varargs] note: old version of pybind11 have a bug that leaks memory
// when py::args is mixed with positional arguments
// https://github.com/pybind/pybind11/pull/1216
// we work around this by not mixing positional arguments with varargs
Module& self = py::cast<Module&>(args[0]);
if (self.find_method("forward")) {
Method & m = self.get_method("forward");
return m.graph_for(
createStackForSchema(m.getSchema(), tuple_slice(std::move(args), 1), std::move(kwargs)));
}
throw std::runtime_error("Attempted to call graph_for on a Module without a compiled forward()");
})
.def("get_debug_state", [](Module& self) {
if (self.find_method("forward")) {
Method & m = self.get_method("forward");
return m.getDebugState();
}
throw std::runtime_error("Attempted to call get_debug_state on a Module without a compiled forward()");
})
.def("debug_disable_autodiff_subgraph_inlining", [](Module& self) {
if (self.find_method("forward")) {
Method & m = self.get_method("forward");
m.debugDisableAutodiffSubgraphInlining();
}
})
.def("forward", [](py::args args, py::kwargs kwargs) {
// We implement this in C++ to avoid incurring the pybind11 dispatch
// overhead twice: once to call into the method lookup for "forward"
// and once to actually invoke the method.
//
// There is a thin wrapper on top of this method in the C++ version of
// ScriptModule.
// see: [pybind11 varargs]
Module& self = py::cast<Module&>(args[0]);
return invokeScriptMethodFromPython(self.get_method("forward"), tuple_slice(std::move(args), 1), std::move(kwargs));
});
py::class_<Method>(m, "ScriptMethod", py::dynamic_attr())
.def("graph", [&](Method& self) {
return self.graph();
})
.def("__call__", [](py::args args, py::kwargs kwargs) {
// see: [pybind11 varargs]
Method& method = py::cast<Method&>(args[0]);
return invokeScriptMethodFromPython(method, tuple_slice(std::move(args), 1), std::move(kwargs));
})
.def_property_readonly("graph", [](Method& m) {
return m.graph();
})
.def("propagate_shapes", &Method::propagate_shapes)
.def("propagate_and_assign_input_and_output_shapes", &Method::propagate_and_assign_input_and_output_shapes)
.def("params", &Method::params)
.def("graph_for", [](py::args args, py::kwargs kwargs) {
// see: [pybind11 varargs]
Method& self = py::cast<Method&>(args[0]);
return self.graph_for(createStackForSchema(self.getSchema(), tuple_slice(std::move(args), 1), std::move(kwargs)));
})
.def("debug_disable_autodiff_subgraph_inlining", &Method::debugDisableAutodiffSubgraphInlining)
.def("pretty_print_schema", &Method::pretty_print_schema);
m.def("_jit_script_compile", [](std::shared_ptr<Module> mod, const Def &def, ResolutionCallback rcb, FunctionDefaults defaults) {
auto def_f = def.withName("forward");
defineMethodsInModule(mod, {def_f}, {pythonResolver(rcb)}, nullptr);
auto& method = mod->get_method("forward");
method.setSchema(getSchemaWithNameAndDefaults(
def.range(), method.getSchema(), def.name().name(), defaults));
return mod;
});
m.def("parse_type_comment", [](const std::string& comment) {
Parser p(comment);
return Decl(p.parseTypeComment(true));
});
m.def("merge_type_from_type_comment", &mergeTypesFromTypeComment);
m.def("import_ir_module", [](ModuleLookup module_lookup, const std::string& filename) {
import_ir_module(module_lookup, filename);
});
m.def("import_ir_module_from_buffer", [](ModuleLookup module_lookup, const std::string& buffer) {
std::istringstream in(buffer);
import_ir_module(module_lookup, in);
});
m.def("_jit_import_method", import_method);
m.def("_jit_set_emit_module_hook", setEmitModuleHook);
}
} // namespace script
} // namespace jit
} // namespace torch