| |
| import torch |
| from torch._export import aot_compile |
| from torch.export import Dim |
| |
| torch.manual_seed(1337) |
| |
| class Net(torch.nn.Module): |
| def __init__(self, device): |
| super().__init__() |
| self.w_pre = torch.randn(4, 4, device=device) |
| self.w_add = torch.randn(4, 4, device=device) |
| |
| def forward(self, x): |
| w_transpose = torch.transpose(self.w_pre, 0, 1) |
| w_relu = torch.nn.functional.relu(w_transpose) |
| w = w_relu + self.w_add |
| return torch.matmul(x, w) |
| |
| data = {} |
| |
| for device in ["cpu", "cuda"]: |
| for use_runtime_constant_folding in [True, False]: |
| if device == "cpu" and use_runtime_constant_folding: |
| # We do not test runtime const folding for cpu mode. |
| continue |
| model = Net(device).to(device=device) |
| x = torch.randn((4, 4), device=device) |
| with torch.no_grad(): |
| ref_output = model(x) |
| |
| torch._dynamo.reset() |
| with torch.no_grad(): |
| dim0_x = Dim("dim0_x", min=1, max=1024) |
| dynamic_shapes = {"x": {0: dim0_x}} |
| model_so_path = aot_compile( |
| model, |
| (x,), |
| dynamic_shapes=dynamic_shapes, |
| options={"aot_inductor.use_runtime_constant_folding": use_runtime_constant_folding}) |
| |
| suffix = f"{device}" |
| if use_runtime_constant_folding: |
| suffix += "_use_runtime_constant_folding" |
| data.update({ |
| f"model_so_path_{suffix}": model_so_path, |
| f"inputs_{suffix}": [x], |
| f"outputs_{suffix}": [ref_output], |
| f"w_pre_{suffix}": model.w_pre, |
| f"w_add_{suffix}": model.w_add, |
| }) |
| |
| # Use this to communicate tensors to the cpp code |
| class Serializer(torch.nn.Module): |
| def __init__(self, data): |
| super().__init__() |
| for key in data: |
| setattr(self, key, data[key]) |
| |
| torch.jit.script(Serializer(data)).save("data.pt") |