| import torch |
| import torch.nn.functional as F |
| from torch._six import inf |
| from operator import mul |
| from functools import reduce |
| import math |
| |
| __all__ = [ |
| 'argmax', |
| 'argmin', |
| 'btrifact', |
| 'btriunpack', |
| 'isfinite', |
| 'isinf', |
| 'isnan', |
| 'split', |
| 'stft', |
| 'unique', |
| ] |
| |
| |
| def split(tensor, split_size_or_sections, dim=0): |
| r"""Splits the tensor into chunks. |
| |
| If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will |
| be split into equally sized chunks (if possible). Last chunk will be smaller if |
| the tensor size along the given dimension :attr:`dim= is not divisible by |
| :attr:`split_size`. |
| |
| If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split |
| into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according |
| to :attr:`split_size_or_sections`. |
| |
| Arguments: |
| tensor (Tensor): tensor to split. |
| split_size_or_sections (int) or (list(int)): size of a single chunk or |
| list of sizes for each chunk |
| dim (int): dimension along which to split the tensor. |
| """ |
| # Overwriting reason: |
| # This dispatches to two ATen functions depending on the type of |
| # split_size_or_sections. The branching code is in tensor.py, which we |
| # call here. |
| return tensor.split(split_size_or_sections, dim) |
| |
| |
| def btrifact(A, info=None, pivot=True): |
| r"""Batch LU factorization. |
| |
| Returns a tuple containing the LU factorization and pivots. Pivoting is done if |
| :attr:`pivot` is set. |
| |
| The optional argument :attr:`info` stores information if the factorization |
| succeeded for each minibatch example. The :attr:`info` is provided as an |
| `IntTensor`, its values will be filled from dgetrf and a non-zero value |
| indicates an error occurred. Specifically, the values are from cublas if cuda is |
| being used, otherwise LAPACK. |
| |
| .. warning:: |
| The :attr:`info` argument is deprecated in favor of :meth:`torch.btrifact_with_info`. |
| |
| Arguments: |
| A (Tensor): the tensor to factor |
| info (IntTensor, optional): (deprecated) an `IntTensor` to store values |
| indicating whether factorization succeeds |
| pivot (bool, optional): controls whether pivoting is done |
| |
| Returns: |
| A tuple containing factorization and pivots. |
| |
| Example:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> A_LU, pivots = torch.btrifact(A) |
| >>> A_LU |
| tensor([[[ 1.3506, 2.5558, -0.0816], |
| [ 0.1684, 1.1551, 0.1940], |
| [ 0.1193, 0.6189, -0.5497]], |
| |
| [[ 0.4526, 1.2526, -0.3285], |
| [-0.7988, 0.7175, -0.9701], |
| [ 0.2634, -0.9255, -0.3459]]]) |
| |
| >>> pivots |
| tensor([[ 3, 3, 3], |
| [ 3, 3, 3]], dtype=torch.int32) |
| """ |
| # Overwriting reason: |
| # `info` is being deprecated in favor of `btrifact_with_info`. This warning |
| # is in tensor.py, which we call here. |
| return A.btrifact(info, pivot) |
| |
| |
| def btriunpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True): |
| r"""Unpacks the data and pivots from a batched LU factorization (btrifact) of a tensor. |
| |
| Returns a tuple of tensors as ``(the pivots, the L tensor, the U tensor)``. |
| |
| Arguments: |
| LU_data (Tensor): the packed LU factorization data |
| LU_pivots (Tensor): the packed LU factorization pivots |
| unpack_data (bool): flag indicating if the data should be unpacked |
| unpack_pivots (bool): flag indicating if the pivots should be unpacked |
| |
| Example:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> A_LU, pivots = A.btrifact() |
| >>> P, A_L, A_U = torch.btriunpack(A_LU, pivots) |
| >>> |
| >>> # can recover A from factorization |
| >>> A_ = torch.bmm(P, torch.bmm(A_L, A_U)) |
| """ |
| |
| nBatch, sz, _ = LU_data.size() |
| |
| if unpack_data: |
| I_U = torch.triu(torch.ones(sz, sz)).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz) |
| I_L = 1 - I_U |
| L = LU_data.new(LU_data.size()).zero_() |
| U = LU_data.new(LU_data.size()).zero_() |
| I_diag = torch.eye(sz).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz) |
| L[I_diag] = 1.0 |
| L[I_L] = LU_data[I_L] |
| U[I_U] = LU_data[I_U] |
| else: |
| L = U = None |
| |
| if unpack_pivots: |
| P = torch.eye(sz).type_as(LU_data).unsqueeze(0).repeat(nBatch, 1, 1) |
| for i in range(nBatch): |
| for j in range(sz): |
| k = int(LU_pivots[i, j] - 1) |
| t = P[i, :, j].clone() |
| P[i, :, j] = P[i, :, k] |
| P[i, :, k] = t |
| else: |
| P = None |
| |
| return P, L, U |
| |
| |
| def isfinite(tensor): |
| r"""Returns a new tensor with boolean elements representing if each element is `Finite` or not. |
| |
| Arguments: |
| tensor (Tensor): A tensor to check |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location of finite elements and 0 otherwise |
| |
| Example:: |
| |
| >>> torch.isfinite(torch.Tensor([1, float('inf'), 2, float('-inf'), float('nan')])) |
| tensor([ 1, 0, 1, 0, 0], dtype=torch.uint8) |
| """ |
| if not isinstance(tensor, torch.Tensor): |
| raise ValueError("The argument is not a tensor", str(tensor)) |
| return (tensor == tensor) & (tensor.abs() != inf) |
| |
| |
| def isinf(tensor): |
| r"""Returns a new tensor with boolean elements representing if each element is `+/-INF` or not. |
| |
| Arguments: |
| tensor (Tensor): A tensor to check |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `+/-INF` elements and 0 otherwise |
| |
| Example:: |
| |
| >>> torch.isinf(torch.Tensor([1, float('inf'), 2, float('-inf'), float('nan')])) |
| tensor([ 0, 1, 0, 1, 0], dtype=torch.uint8) |
| """ |
| if not isinstance(tensor, torch.Tensor): |
| raise ValueError("The argument is not a tensor", str(tensor)) |
| return tensor.abs() == inf |
| |
| |
| def stft(input, n_fft, hop_length=None, win_length=None, window=None, |
| center=True, pad_mode='reflect', normalized=False, onesided=True): |
| r"""Short-time Fourier transform (STFT). |
| |
| Ignoring the optional batch dimension, this method computes the following |
| expression: |
| |
| .. math:: |
| X[m, \omega] = \sum_{k = 0}^{\text{win_length}}% |
| window[k]\ input[m \times hop_length + k]\ % |
| e^{- j \frac{2 \pi \cdot \omega k}{\text{win_length}}}, |
| |
| where :math:`m` is the index of the sliding window, and :math:`\omega` is |
| the frequency that :math:`0 \leq \omega < \text{n_fft}`. When |
| :attr:`onesided` is the default value ``True``, |
| |
| * :attr:`input` must be either a 1-D time sequenceor 2-D a batch of time |
| sequences. |
| |
| * If :attr:`hop_length` is ``None`` (default), it is treated as equal to |
| ``floor(n_fft / 4)``. |
| |
| * If :attr:`win_length` is ``None`` (default), it is treated as equal to |
| :attr:`n_fft`. |
| |
| * :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from |
| :meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is |
| treated as if having :math:`1` everywhere in the window. If |
| :math:`\text{win_length} < \text{n_fft}`, :attr:`window` will be padded on |
| both sides to length :attr:`n_fft` before being applied. |
| |
| * If :attr:`center` is ``True`` (default), :attr:`input` will be padded on |
| both sides so that the :math:`t`-th frame is centered at time |
| :math:`t \times \text{hop_length}`. Otherwise, the :math:`t`-th frame |
| begins at time :math:`t \times \text{hop_length}`. |
| |
| * :attr:`pad_mode` determines the padding method used on :attr:`input` when |
| :attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for |
| all available options. Default is ``"reflect"``. |
| |
| * If :attr:`onesided` is ``True`` (default), only values for :math:`\omega` |
| in :math:`\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n_fft}}{2} \right\rfloor + 1\right]` |
| are returned because the real-to-complex Fourier transform satisfies the |
| conjugate symmetry, i.e., :math:`X[m, \omega] = X[m, \text{n_fft} - \omega]^*`. |
| |
| * If :attr:`normalized` is ``True`` (default is ``False``), the function |
| returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame_length})^{-0.5}`. |
| |
| Returns the real and the imaginary parts together as one tensor of size |
| :math:`(* \times N \times T \times 2)`, where :math:`*` is the optional |
| batch size of :attr:`input`, :math:`N` is the number of frequencies where |
| STFT is applied, :math:`T` is the total number of frames used, and each pair |
| in the last dimension represents a complex number as the real part and the |
| imaginary part. |
| |
| .. warning:: |
| This function changed signature at version 0.4.1. Calling with the |
| previous signature may cause error or return incorrect result. |
| |
| Arguments: |
| input (Tensor): the input tensor |
| n_fft (int, optional): size of Fourier transform |
| hop_length (int): the distance between neighboring sliding window |
| frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``) |
| win_length (int): the size of window frame and STFT filter. |
| Default: ``None`` (treated as equal to :attr:`n_fft`) |
| window (Tensor, optional): the optional window function. |
| Default: ``None`` (treated as window of all :math:`1`s) |
| center (bool, optional): whether to pad :attr:`input` on both sides so |
| that the :math:`t`-th frame is centered at time :math:`t \times \text{hop_length}`. |
| Default: ``True`` |
| pad_mode (string, optional): controls the padding method used when |
| :attr:`center` is ``True``. Default: ``"reflect"`` |
| normalized (bool, optional): controls whether to return the normalized STFT results |
| Default: ``False`` |
| onesided (bool, optional): controls whether to return half of results to |
| avoid redundancy Default: ``True`` |
| |
| Returns: |
| Tensor: A tensor containing the STFT result with shape described above |
| |
| """ |
| # TODO: after having proper ways to map Python strings to ATen Enum, move |
| # this and F.pad to ATen. |
| if center: |
| signal_dim = input.dim() |
| extended_shape = [1] * (3 - signal_dim) + list(input.size()) |
| pad = int(n_fft // 2) |
| input = F.pad(input.view(extended_shape), (pad, pad), pad_mode) |
| input = input.view(input.shape[-signal_dim:]) |
| return torch._C._VariableFunctions.stft(input, n_fft, hop_length, win_length, window, normalized, onesided) |
| |
| |
| def isnan(tensor): |
| r"""Returns a new tensor with boolean elements representing if each element is `NaN` or not. |
| |
| Arguments: |
| tensor (Tensor): A tensor to check |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `NaN` elements. |
| |
| Example:: |
| |
| >>> torch.isnan(torch.tensor([1, float('nan'), 2])) |
| tensor([ 0, 1, 0], dtype=torch.uint8) |
| """ |
| if not isinstance(tensor, torch.Tensor): |
| raise ValueError("The argument is not a tensor", str(tensor)) |
| return tensor != tensor |
| |
| |
| def unique(input, sorted=False, return_inverse=False): |
| r"""Returns the unique scalar elements of the input tensor as a 1-D tensor. |
| |
| Arguments: |
| input (Tensor): the input tensor |
| sorted (bool): Whether to sort the unique elements in ascending order |
| before returning as output. |
| return_inverse (bool): Whether to also return the indices for where |
| elements in the original input ended up in the returned unique list. |
| |
| Returns: |
| (Tensor, Tensor (optional)): A tensor or a tuple of tensors containing |
| |
| - **output** (*Tensor*): the output list of unique scalar elements. |
| - **inverse_indices** (*Tensor*): (optional) if |
| :attr:`return_inverse` is True, there will be a |
| 2nd returned tensor (same shape as input) representing the indices |
| for where elements in the original input map to in the output; |
| otherwise, this function will only return a single tensor. |
| |
| Example:: |
| |
| >>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long)) |
| >>> output |
| tensor([ 2, 3, 1]) |
| |
| >>> output, inverse_indices = torch.unique( |
| torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True) |
| >>> output |
| tensor([ 1, 2, 3]) |
| >>> inverse_indices |
| tensor([ 0, 2, 1, 2]) |
| |
| >>> output, inverse_indices = torch.unique( |
| torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True) |
| >>> output |
| tensor([ 1, 2, 3]) |
| >>> inverse_indices |
| tensor([[ 0, 2], |
| [ 1, 2]]) |
| |
| """ |
| output, inverse_indices = torch._unique( |
| input, |
| sorted=sorted, |
| return_inverse=return_inverse, |
| ) |
| if return_inverse: |
| return output, inverse_indices |
| else: |
| return output |
| |
| |
| def argmax(input, dim=None, keepdim=False): |
| """Returns the indices of the maximum values of a tensor across a dimension. |
| |
| This is the second value returned by :meth:`torch.max`. See its |
| documentation for the exact semantics of this method. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce. If ``None``, the argmax of the |
| flattened input is returned. |
| keepdim (bool): whether the output tensors have :attr:`dim` |
| retained or not. Ignored if ``dim=None``. |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], |
| [-0.7401, -0.8805, -0.3402, -1.1936], |
| [ 0.4907, -1.3948, -1.0691, -0.3132], |
| [-1.6092, 0.5419, -0.2993, 0.3195]]) |
| |
| |
| >>> torch.argmax(a, dim=1) |
| tensor([ 0, 2, 0, 1]) |
| """ |
| if dim is None: |
| return torch._argmax(input.contiguous().view(-1), dim=0, keepdim=False) |
| return torch._argmax(input, dim, keepdim) |
| |
| |
| def argmin(input, dim=None, keepdim=False): |
| """Returns the indices of the minimum values of a tensor across a dimension. |
| |
| This is the second value returned by :meth:`torch.min`. See its |
| documentation for the exact semantics of this method. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce. If ``None``, the argmin of the |
| flattened input is returned. |
| keepdim (bool): whether the output tensors have :attr:`dim` |
| retained or not. Ignored if ``dim=None``. |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.1139, 0.2254, -0.1381, 0.3687], |
| [ 1.0100, -1.1975, -0.0102, -0.4732], |
| [-0.9240, 0.1207, -0.7506, -1.0213], |
| [ 1.7809, -1.2960, 0.9384, 0.1438]]) |
| |
| |
| >>> torch.argmin(a, dim=1) |
| tensor([ 2, 1, 3, 1]) |
| """ |
| if dim is None: |
| return torch._argmin(input.contiguous().view(-1), dim=0, keepdim=False) |
| return torch._argmin(input, dim, keepdim) |