| import torch |
| from . import _functional as F |
| from .optimizer import Optimizer |
| |
| |
| class Rprop(Optimizer): |
| r"""Implements the resilient backpropagation algorithm. |
| |
| .. math:: |
| \begin{aligned} |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{input} : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta) |
| \text{ (objective)}, \\ |
| &\hspace{13mm} \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min} |
| \text{ (step sizes)} \\ |
| &\textbf{initialize} : g^0_{prev} \leftarrow 0, |
| \: \eta_0 \leftarrow \text{lr (learning rate)} \\ |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
| &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
| &\hspace{5mm} \textbf{for} \text{ } i = 0, 1, \ldots, d-1 \: \mathbf{do} \\ |
| &\hspace{10mm} \textbf{if} \: g^i_{prev} g^i_t > 0 \\ |
| &\hspace{15mm} \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+}, |
| \Gamma_{max}) \\ |
| &\hspace{10mm} \textbf{else if} \: g^i_{prev} g^i_t < 0 \\ |
| &\hspace{15mm} \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-}, |
| \Gamma_{min}) \\ |
| &\hspace{10mm} \textbf{else} \: \\ |
| &\hspace{15mm} \eta^i_t \leftarrow \eta^i_{t-1} \\ |
| &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t) \\ |
| &\hspace{5mm}g_{prev} \leftarrow g_t \\ |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| &\bf{return} \: \theta_t \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| \end{aligned} |
| |
| For further details regarding the algorithm we refer to the paper |
| `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm |
| <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-2) |
| etas (Tuple[float, float], optional): pair of (etaminus, etaplis), that |
| are multiplicative increase and decrease factors |
| (default: (0.5, 1.2)) |
| step_sizes (Tuple[float, float], optional): a pair of minimal and |
| maximal allowed step sizes (default: (1e-6, 50)) |
| """ |
| |
| def __init__(self, params, lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50)): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 < etas[0] < 1.0 < etas[1]: |
| raise ValueError("Invalid eta values: {}, {}".format(etas[0], etas[1])) |
| |
| defaults = dict(lr=lr, etas=etas, step_sizes=step_sizes) |
| super(Rprop, self).__init__(params, defaults) |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params = [] |
| grads = [] |
| prevs = [] |
| step_sizes = [] |
| |
| for p in group['params']: |
| if p.grad is None: |
| continue |
| params.append(p) |
| grad = p.grad |
| if grad.is_sparse: |
| raise RuntimeError('Rprop does not support sparse gradients') |
| |
| grads.append(grad) |
| state = self.state[p] |
| |
| # State initialization |
| if len(state) == 0: |
| state['step'] = 0 |
| state['prev'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| state['step_size'] = grad.new().resize_as_(grad).fill_(group['lr']) |
| |
| prevs.append(state['prev']) |
| step_sizes.append(state['step_size']) |
| |
| etaminus, etaplus = group['etas'] |
| step_size_min, step_size_max = group['step_sizes'] |
| |
| state['step'] += 1 |
| |
| F.rprop(params, |
| grads, |
| prevs, |
| step_sizes, |
| step_size_min=step_size_min, |
| step_size_max=step_size_max, |
| etaminus=etaminus, |
| etaplus=etaplus) |
| |
| return loss |