blob: 946c0a7276150a9aa24c18161f7cd88a4acb7b1d [file] [log] [blame]
#include <ATen/native/BinaryOps.h>
#include <cmath>
#include <iostream>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec256/functional.h>
#include <ATen/cpu/vec256/vec256.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
#include <ATen/native/Math.h>
#include <c10/macros/Macros.h>
namespace at {
namespace native {
namespace {
using namespace vec256;
// Note: Undefined behavior when performing addition is intentionally
// ignored.
void add_kernel(TensorIterator& iter, Scalar alpha_scalar) {
if (iter.dtype() == ScalarType::Bool) {
using scalar_t = bool;
auto alpha = alpha_scalar.to<scalar_t>();
cpu_kernel(iter,
[=](scalar_t a, scalar_t b) __ubsan_ignore_undefined__ -> scalar_t { return a + alpha * b; });
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kBFloat16, kHalf, iter.dtype(), "add_cpu/sub_cpu", [&]() {
auto alpha = alpha_scalar.to<scalar_t>();
auto alpha_vec = Vec256<scalar_t>(alpha);
cpu_kernel_vec(iter,
[=](scalar_t a, scalar_t b) __ubsan_ignore_undefined__ -> scalar_t { return a + alpha * b; },
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) __ubsan_ignore_undefined__ {
return vec256::fmadd(b, alpha_vec, a);
});
});
}
}
void add_clamp_kernel(TensorIterator& iter, Scalar alpha_scalar, Scalar min_val, Scalar max_val) {
AT_DISPATCH_ALL_TYPES(iter.dtype(), "add_clamp_cpu", [&]() {
auto alpha = alpha_scalar.to<scalar_t>();
auto alpha_vec = Vec256<scalar_t>(alpha);
auto min_scalar = min_val.to<scalar_t>();
auto min_vec = Vec256<scalar_t>(min_scalar);
auto max_scalar = max_val.to<scalar_t>();
auto max_vec = Vec256<scalar_t>(max_scalar);
cpu_kernel_vec(iter,
[=](scalar_t a, scalar_t b) __ubsan_ignore_undefined__ -> scalar_t {
return std::min(max_scalar, std::max(min_scalar, a + alpha * b));
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) __ubsan_ignore_undefined__ {
auto add_clamp_res = vec256::fmadd(b, alpha_vec, a);
add_clamp_res = vec256::clamp_min(add_clamp_res, min_vec);
add_clamp_res = vec256::clamp_max(add_clamp_res, max_vec);
return add_clamp_res;
});
});
}
void atan2_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "atan2_cpu", [&]() {
cpu_kernel_vec(iter, [=](scalar_t a, scalar_t b) -> scalar_t {
return std::atan2(a, b);
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a.atan2(b);
});
});
}
// Note: Undefined behavior when performing subtraction is intentionally
// ignored.
void sub_kernel(TensorIterator& iter, Scalar alpha_scalar) __ubsan_ignore_undefined__ {
add_kernel(iter, -alpha_scalar);
}
void mul_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
cpu_kernel(iter, [=](bool a, bool b) -> bool { return a && b; });
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kBFloat16, kHalf, iter.dtype(), "mul_cpu", [&]() {
cpu_kernel_vec(iter,
[=](scalar_t a, scalar_t b) -> scalar_t { return a * b; },
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a * b;
});
});
}
}
void div_kernel(TensorIterator& iter) {
if (isIntegralType(iter.dtype(), /*includeBool*/ false)) {
// There's no SIMD integer division, so don't try to vectorize it.
// TODO: if the divisor is a scalar, rewrite as multiplication by a constant.
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "div_cpu", [&]() {
cpu_kernel(iter, [](scalar_t a, scalar_t b) -> scalar_t {
TORCH_CHECK(b != 0, "ZeroDivisionError");
return a / b;
});
});
} else {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "div_cpu", [&]() {
cpu_kernel_vec(iter,
[](scalar_t a, scalar_t b) __ubsan_ignore_float_divide_by_zero__ -> scalar_t {
return a / b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a / b;
});
});
}
}
void remainder_kernel(TensorIterator& iter) {
if (isIntegralType(iter.dtype(), /*includeBool*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "remainder_cpu", [&]() {
cpu_kernel(iter, [](scalar_t a, scalar_t b) -> scalar_t {
TORCH_CHECK(b != 0, "ZeroDivisionError");
scalar_t r = a % b;
if ((r != 0) && ((r < 0) != (b < 0))) {
r += b;
}
return r;
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.dtype(), "remainder_cpu", [&]() {
cpu_kernel_vec(iter,
[=](scalar_t a, scalar_t b) __ubsan_ignore_float_divide_by_zero__ -> scalar_t {
scalar_t mod = std::fmod(a, b);
if ((mod != 0) && ((b < 0) != (mod < 0))) mod += b;
return mod;
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
auto mod = a.fmod(b);
const auto zero = Vec256<scalar_t>(0);
auto mask = (mod != zero) & ((b < zero) ^ (mod < zero));
return Vec256<scalar_t>::blendv(mod, mod + b, mask);
});
});
}
}
void bitwise_and_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
cpu_kernel(
iter,
[](bool a, bool b) {
return a && b;
});
} else {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "bitwise_and_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a & b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a & b;
});
});
}
}
void bitwise_or_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
cpu_kernel(
iter,
[](bool a, bool b) {
return a || b;
});
} else {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "bitwise_or_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a | b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a | b;
});
});
}
}
void bitwise_xor_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
// Boolean type does not work with ^ (bitwise XOR) in C++. bitwise_xor wraps this operation for both Boolean and
// integral types.
cpu_kernel(
iter,
[](bool a, bool b) {
return a != b;
});
} else {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "bitwise_xor_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a ^ b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a ^ b;
});
});
}
}
void lshift_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Float || iter.dtype() == ScalarType::Double) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "lshift_cpu", [&]() {
auto base_vec = Vec256<scalar_t>((scalar_t)(2));
cpu_kernel_vec(
iter,
[=](scalar_t a, scalar_t b) -> scalar_t {
return a * std::pow((scalar_t)(2), b);
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a * base_vec.pow(b);
});
});
} else {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "lshift_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return static_cast<std::make_unsigned_t<scalar_t>>(a) << b;
});
});
}
}
void logical_and_kernel(TensorIterator& iter) {
// We use if-else here specifically for bool instead of using iter.common_dtype() like the CUDA implementation because
// common_dtype() is unavailable for bfloat16.
if (iter.dtype() == ScalarType::Bool) {
AT_DISPATCH_ALL_TYPES_AND3(kBool, kBFloat16, kHalf, iter.input_dtype(), "logical_and_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> bool {
return a && b;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "logical_and_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return static_cast<scalar_t>(a && b);
});
});
}
}
void logical_or_kernel(TensorIterator& iter) {
// We use if-else here specifically for bool instead of using iter.common_dtype() like the CUDA implementation because
// common_dtype() is unavailable for bfloat16.
if (iter.dtype() == ScalarType::Bool) {
AT_DISPATCH_ALL_TYPES_AND3(kBool, kBFloat16, kHalf, iter.input_dtype(), "logical_or_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> bool {
return a || b;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND3(kBool, kBFloat16, kHalf, iter.dtype(), "logical_or_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return static_cast<scalar_t>(a || b);
});
});
}
}
void logical_xor_kernel(TensorIterator& iter) {
// We use if-else here specifically for bool instead of using iter.common_dtype() like the CUDA implementation because
// common_dtype() is unavailable for bfloat16.
if (iter.dtype() == ScalarType::Bool) {
AT_DISPATCH_ALL_TYPES_AND3(kBool, kBFloat16, kHalf, iter.input_dtype(), "logical_xor_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> bool {
return bool(a) != bool(b);
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "logical_xor_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return static_cast<scalar_t>(bool(a) != bool(b));
});
});
}
}
void rshift_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Float || iter.dtype() == ScalarType::Double) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "rshift_cpu", [&]() {
auto base_vec = Vec256<scalar_t>((scalar_t)(2));
cpu_kernel_vec(
iter,
[=](scalar_t a, scalar_t b) -> scalar_t {
return a / std::pow((scalar_t)(2), b);
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a / base_vec.pow(b);
});
});
} else {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "rshift_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a >> b;
});
});
}
}
void lt_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
AT_DISPATCH_ALL_TYPES_AND2(kBool, kBFloat16, iter.input_dtype(), "lt_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> bool {
return a < b;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND(kBFloat16, iter.dtype(), "lt_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a < b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) -> Vec256<scalar_t> {
return a.lt(b);
});
});
}
}
void le_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
AT_DISPATCH_ALL_TYPES_AND3(kBool, kBFloat16, kHalf, iter.input_dtype(), "le_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> bool {
return a <= b;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "le_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a <= b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) -> Vec256<scalar_t> {
return a.le(b);
});
});
}
}
void gt_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
AT_DISPATCH_ALL_TYPES_AND3(kBool, kBFloat16, kHalf, iter.input_dtype(), "gt_cpu", [&]() {
cpu_kernel(iter,
[=](scalar_t a, scalar_t b) -> bool {
return a > b;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "gt_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a > b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) -> Vec256<scalar_t> {
return a.gt(b);
});
});
}
}
void ge_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
AT_DISPATCH_ALL_TYPES_AND3(kBool, kBFloat16, kHalf, iter.input_dtype(), "ge_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> bool {
return a >= b;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "ge_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a >= b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) -> Vec256<scalar_t> {
return a.ge(b);
});
});
}
}
void eq_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kBool, kBFloat16, kHalf, iter.input_dtype(), "eq_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> bool {
return a == b;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kBFloat16, kHalf, iter.dtype(), "eq_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a == b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) -> Vec256<scalar_t> {
return a.eq(b);
});
});
}
}
void ne_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kBool, kBFloat16, kHalf, iter.input_dtype(), "ne_cpu", [&]() {
cpu_kernel(iter,
[](scalar_t a, scalar_t b) -> bool {
return a != b;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kBFloat16, kHalf, iter.dtype(), "ne_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return a != b;
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) -> Vec256<scalar_t> {
return a.ne(b);
});
});
}
}
void maximum_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
cpu_kernel(iter,
[](bool a, bool b) -> bool {
return a || b;
});
} else if (isIntegralType(iter.dtype(), /*includeBool=*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "maximum_cpu", [&]() {
cpu_kernel_vec(iter,
[](scalar_t a, scalar_t b) -> scalar_t { return std::max(a, b); },
[](Vec256<scalar_t> a, Vec256<scalar_t> b) { return at::vec256::maximum(a, b); });
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "maximum_cpu", [&]() {
cpu_kernel_vec(iter,
[](scalar_t a, scalar_t b) -> scalar_t {
if (a != a || b != b) {
return std::numeric_limits<scalar_t>::quiet_NaN();
} else {
return std::max(a, b);
}
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) { return at::vec256::maximum(a, b); });
});
}
}
void minimum_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
cpu_kernel(iter,
[](bool a, bool b) -> bool {
return a && b;
});
} else if (isIntegralType(iter.dtype(), /*includeBool=*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "minimum_cpu", [&]() {
cpu_kernel_vec(iter,
[](scalar_t a, scalar_t b) -> scalar_t { return std::min(a, b); },
[](Vec256<scalar_t> a, Vec256<scalar_t> b) { return at::vec256::minimum(a, b); });
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "minimum_cpu", [&]() {
cpu_kernel_vec(iter,
[](scalar_t a, scalar_t b) -> scalar_t {
if (a != a || b != b) {
return std::numeric_limits<scalar_t>::quiet_NaN();
} else {
return std::min(a, b);
}
},
[](Vec256<scalar_t> a, Vec256<scalar_t> b) { return at::vec256::minimum(a, b); });
});
}
}
void smooth_l1_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(
kBFloat16, kHalf, iter.dtype(), "smooth_l1_cpu", [&]() {
using Vec = Vec256<scalar_t>;
const Vec one_vec(static_cast<scalar_t>(1));
const Vec point_five_vec(static_cast<scalar_t>(0.5));
cpu_kernel_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
auto z = std::abs(a - b);
return z < static_cast<scalar_t>(1)
? static_cast<scalar_t>(0.5) * z * z
: z - static_cast<scalar_t>(0.5);
},
[&one_vec, &point_five_vec](Vec a, Vec b) {
auto z = (a - b).abs();
return Vec::blendv(
point_five_vec * z * z, z - point_five_vec, z >= one_vec);
});
});
}
void sigmoid_backward_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_backward_cpu", [&]() {
auto one_vec = Vec256<scalar_t>((scalar_t)(1));
cpu_kernel_vec(iter,
[=](scalar_t a, scalar_t b) -> scalar_t {
return a * (scalar_t(1) - b) * b;
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a * (one_vec - b) * b;
});
});
}
void logit_backward_kernel(TensorIterator& iter, Scalar eps_scalar) {
AT_DISPATCH_FLOATING_TYPES_AND(
kBFloat16, iter.dtype(), "logit_backward_cpu", [&]() {
const scalar_t eps = eps_scalar.to<scalar_t>();
const Vec256<scalar_t> kZeroVec(scalar_t(0));
const Vec256<scalar_t> kOneVec(scalar_t(1));
if (eps < scalar_t(0)) {
const Vec256<scalar_t> kNanVec(
std::numeric_limits<scalar_t>::quiet_NaN());
cpu_kernel_vec(
iter,
[](scalar_t dy, scalar_t x) {
return (x < scalar_t(0) || x > scalar_t(1))
? std::numeric_limits<scalar_t>::quiet_NaN()
: ((x == scalar_t(0) || x == scalar_t(1))
? (dy * std::numeric_limits<scalar_t>::infinity())
: (dy / (x * (scalar_t(1) - x))));
},
[kZeroVec, kOneVec, kNanVec](
Vec256<scalar_t> dy_vec, Vec256<scalar_t> x_vec) {
return Vec256<scalar_t>::blendv(
kNanVec,
dy_vec / (x_vec * (kOneVec - x_vec)),
(x_vec >= kZeroVec) & (x_vec <= kOneVec));
});
} else {
const scalar_t lo = eps;
const scalar_t hi = scalar_t(1) - eps;
const Vec256<scalar_t> lo_vec(lo);
const Vec256<scalar_t> hi_vec(hi);
cpu_kernel_vec(
iter,
[lo, hi](scalar_t dy, scalar_t x) {
return (x < lo || x > hi)
? scalar_t(0)
: ((x == scalar_t(0) || x == scalar_t(1))
? dy * std::numeric_limits<scalar_t>::infinity()
: dy / (x * (scalar_t(1) - x)));
},
[kZeroVec, kOneVec, lo_vec, hi_vec](
Vec256<scalar_t> dy_vec, Vec256<scalar_t> x_vec) {
return Vec256<scalar_t>::blendv(
kZeroVec,
dy_vec / (x_vec * (kOneVec - x_vec)),
(x_vec >= lo_vec) & (x_vec <= hi_vec));
});
}
});
}
void tanh_backward_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(iter.dtype(), "tanh_backward_cpu", [&]() {
auto one_vec = Vec256<scalar_t>(scalar_t{1});
cpu_kernel_vec(
iter,
[=](scalar_t a, scalar_t b) -> scalar_t {
return a * (scalar_t{1} - b * b);
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a * (one_vec - b * b);
});
});
}
void mse_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Half) {
TORCH_WARN_ONCE("Applying the CPU mse kernel on half-type tensors. "
"This may be slower than using float or double-type tensors.");
}
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.dtype(), "mse_cpu", [&]() {
cpu_kernel_vec(iter,
[=](scalar_t a, scalar_t b) -> scalar_t {
auto diff = a - b;
return diff * diff;
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
auto diff = a - b;
return diff * diff;
});
});
}
void fmod_kernel(TensorIterator& iter) {
if (isIntegralType(iter.dtype(), /*includeBool=*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "fmod_cpu", [&]() {
cpu_kernel(iter, [=](scalar_t x, scalar_t d) -> scalar_t {
TORCH_CHECK(d != 0, "ZeroDivisionError");
return x % d;
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND(kHalf, iter.dtype(), "fmod_cpu", [&]() {
cpu_kernel_vec(
iter,
[](scalar_t x, scalar_t d) -> scalar_t {
return std::fmod(x, d);
},
[](Vec256<scalar_t> x, Vec256<scalar_t> d) {
return x.fmod(d);
});
});
}
}
void fmod_scalar_kernel(TensorIterator& iter, Scalar divisor) {
if (isIntegralType(iter.dtype(), /*includeBool=*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "fmod_scalar_cpu", [&]() {
const auto div = divisor.to<scalar_t>();
TORCH_CHECK(div != 0, "ZeroDivisionError");
cpu_kernel(iter, [=](scalar_t x) -> scalar_t {
return x % div;
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND(kHalf, iter.dtype(), "fmod_scalar_cpu", [&]() {
const auto div = divisor.to<scalar_t>();
const auto div_vec = Vec256<scalar_t>(div);
cpu_kernel_vec(
iter,
[=](scalar_t x) -> scalar_t {
return std::fmod(x, div);
},
[=](Vec256<scalar_t> x) {
return x.fmod(div_vec);
});
});
}
}
void logaddexp_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "logaddexp_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a, scalar_t b) -> scalar_t {
if (std::isinf(a) && a == b) {
return a;
} else {
scalar_t m = std::max(a, b);
return m + std::log((scalar_t)(1.0) + std::exp(-std::abs(a - b)));
}
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
Vec256<scalar_t> inf(std::numeric_limits<scalar_t>::infinity());
Vec256<scalar_t> one(1.0);
Vec256<scalar_t> m = maximum(a, b);
return Vec256<scalar_t>::blendv(
m + (one + (a - b).abs().neg().exp()).log(),
a,
(a == b) & (a.abs() == inf));
});
});
}
void logaddexp2_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "logaddexp2_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a, scalar_t b) -> scalar_t {
if (std::isinf(a) && a == b) {
return a;
} else {
scalar_t m = std::max(a, b);
return m + std::log2((scalar_t)(1.0) + std::pow((scalar_t)(2), -std::abs(a - b)));
}
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
Vec256<scalar_t> inf(std::numeric_limits<scalar_t>::infinity());
Vec256<scalar_t> one(1.0);
Vec256<scalar_t> two(2.0);
Vec256<scalar_t> m = maximum(a, b);
return Vec256<scalar_t>::blendv(
m + (one + two.pow((a - b).abs().neg())).log2(),
a,
(a == b) & (a.abs() == inf));
});
});
}
void gcd_kernel(TensorIterator& iter) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "gcd_cpu", [&]() {
cpu_kernel(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
return calc_gcd(a, b);
});
});
}
void lcm_kernel(TensorIterator& iter) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "lcm_cpu", [&]() {
cpu_kernel(
iter,
[](scalar_t a, scalar_t b) -> scalar_t {
scalar_t g = calc_gcd(a, b);
return (g == 0) ? 0 : std::abs(a / g * b);
});
});
}
void hypot_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES_AND(kBFloat16, iter.dtype(), "hypot_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a, scalar_t b) -> scalar_t {
return std::hypot(a, b);
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a.hypot(b);
});
});
}
void nextafter_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "nextafter_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a, scalar_t b) -> scalar_t {
return std::nextafter(a, b);
},
[=](Vec256<scalar_t> a, Vec256<scalar_t> b) {
return a.nextafter(b);
});
});
}
} // namespace
REGISTER_DISPATCH(add_stub, &add_kernel);
REGISTER_DISPATCH(add_clamp_stub, &add_clamp_kernel);
REGISTER_DISPATCH(sub_stub, &sub_kernel);
REGISTER_DISPATCH(mul_stub, &mul_kernel);
REGISTER_DISPATCH(div_stub, &div_kernel);
REGISTER_DISPATCH(remainder_stub, &remainder_kernel);
REGISTER_DISPATCH(atan2_stub, &atan2_kernel);
REGISTER_DISPATCH(bitwise_and_stub, &bitwise_and_kernel);
REGISTER_DISPATCH(bitwise_or_stub, &bitwise_or_kernel);
REGISTER_DISPATCH(bitwise_xor_stub, &bitwise_xor_kernel);
REGISTER_DISPATCH(lshift_stub, &lshift_kernel);
REGISTER_DISPATCH(rshift_stub, &rshift_kernel);
REGISTER_DISPATCH(logical_xor_stub, &logical_xor_kernel);
REGISTER_DISPATCH(logical_and_stub, &logical_and_kernel);
REGISTER_DISPATCH(logical_or_stub, &logical_or_kernel);
REGISTER_DISPATCH(lt_stub, &lt_kernel);
REGISTER_DISPATCH(le_stub, &le_kernel);
REGISTER_DISPATCH(gt_stub, &gt_kernel);
REGISTER_DISPATCH(ge_stub, &ge_kernel);
REGISTER_DISPATCH(eq_stub, &eq_kernel);
REGISTER_DISPATCH(ne_stub, &ne_kernel);
REGISTER_DISPATCH(maximum_stub, &maximum_kernel);
REGISTER_DISPATCH(minimum_stub, &minimum_kernel);
REGISTER_DISPATCH(smooth_l1_stub, &smooth_l1_kernel);
REGISTER_DISPATCH(sigmoid_backward_stub, &sigmoid_backward_kernel);
REGISTER_DISPATCH(logit_backward_stub, &logit_backward_kernel);
REGISTER_DISPATCH(tanh_backward_stub, &tanh_backward_kernel);
REGISTER_DISPATCH(mse_stub, &mse_kernel);
REGISTER_DISPATCH(fmod_stub, &fmod_kernel);
REGISTER_DISPATCH(fmod_scalar_stub, &fmod_scalar_kernel);
REGISTER_DISPATCH(logaddexp_stub, &logaddexp_kernel);
REGISTER_DISPATCH(logaddexp2_stub, &logaddexp2_kernel);
REGISTER_DISPATCH(gcd_stub, &gcd_kernel);
REGISTER_DISPATCH(lcm_stub, &lcm_kernel);
REGISTER_DISPATCH(hypot_stub, &hypot_kernel);
REGISTER_DISPATCH(nextafter_stub, &nextafter_kernel);
} // namespace native
} // namespace at