| #include <fstream> |
| #include <iterator> |
| #include <string> |
| |
| #include "binaries/benchmark_helper.h" |
| |
| using std::make_shared; |
| using std::map; |
| using std::string; |
| using std::vector; |
| |
| CAFFE2_DEFINE_string( |
| backend, |
| "builtin", |
| "The backend to use when running the model. The allowed " |
| "backend choices are: builtin, default, nnpack, eigen, mkl, cuda"); |
| |
| CAFFE2_DEFINE_string( |
| init_net, |
| "", |
| "The given net to initialize any parameters."); |
| CAFFE2_DEFINE_string( |
| input, |
| "", |
| "Input that is needed for running the network. If " |
| "multiple input needed, use comma separated string."); |
| CAFFE2_DEFINE_string( |
| input_dims, |
| "", |
| "Alternate to input_files, if all inputs are simple " |
| "float TensorCPUs, specify the dimension using comma " |
| "separated numbers. If multiple input needed, use " |
| "semicolon to separate the dimension of different " |
| "tensors."); |
| CAFFE2_DEFINE_string( |
| input_file, |
| "", |
| "Input file that contain the serialized protobuf for " |
| "the input blobs. If multiple input needed, use comma " |
| "separated string. Must have the same number of items " |
| "as input does."); |
| CAFFE2_DEFINE_string( |
| input_type, |
| "float", |
| "Input type when specifying the input dimension." |
| "The supported types are float, uint8_t."); |
| CAFFE2_DEFINE_int(iter, 10, "The number of iterations to run."); |
| CAFFE2_DEFINE_string(net, "", "The given net to benchmark."); |
| CAFFE2_DEFINE_string( |
| output, |
| "", |
| "Output that should be dumped after the execution " |
| "finishes. If multiple outputs are needed, use comma " |
| "separated string. If you want to dump everything, pass " |
| "'*' as the output value."); |
| CAFFE2_DEFINE_string( |
| output_folder, |
| "", |
| "The folder that the output should be written to. This " |
| "folder must already exist in the file system."); |
| CAFFE2_DEFINE_bool( |
| run_individual, |
| false, |
| "Whether to benchmark individual operators."); |
| CAFFE2_DEFINE_bool( |
| text_output, |
| false, |
| "Whether to write out output in text format for regression purpose."); |
| CAFFE2_DEFINE_int(warmup, 0, "The number of iterations to warm up."); |
| CAFFE2_DEFINE_bool( |
| wipe_cache, |
| false, |
| "Whether to evict the cache before running network."); |
| |
| int main(int argc, char** argv) { |
| caffe2::GlobalInit(&argc, &argv); |
| |
| observerConfig(); |
| caffe2::ShowLogInfoToStderr(); |
| |
| auto workspace = make_shared<caffe2::Workspace>(new caffe2::Workspace()); |
| bool run_on_gpu = backendCudaSet(caffe2::FLAGS_backend); |
| |
| // support other device type in the future? |
| caffe2::DeviceType run_dev = run_on_gpu ? caffe2::CUDA : caffe2::CPU; |
| |
| // Run initialization network. |
| caffe2::NetDef init_net_def; |
| CAFFE_ENFORCE(ReadProtoFromFile(caffe2::FLAGS_init_net, &init_net_def)); |
| setDeviceType(&init_net_def, run_dev); |
| setOperatorEngine(&init_net_def, caffe2::FLAGS_backend); |
| CAFFE_ENFORCE(workspace->RunNetOnce(init_net_def)); |
| |
| // Run main network. |
| caffe2::NetDef net_def; |
| CAFFE_ENFORCE(ReadProtoFromFile(caffe2::FLAGS_net, &net_def)); |
| setDeviceType(&net_def, run_dev); |
| setOperatorEngine(&net_def, caffe2::FLAGS_backend); |
| |
| map<string, caffe2::TensorProtos> tensor_protos_map; |
| |
| loadInput( |
| workspace, |
| run_on_gpu, |
| tensor_protos_map, |
| caffe2::FLAGS_input, |
| caffe2::FLAGS_input_file, |
| caffe2::FLAGS_input_dims, |
| caffe2::FLAGS_input_type); |
| |
| runNetwork( |
| workspace, |
| net_def, |
| tensor_protos_map, |
| caffe2::FLAGS_wipe_cache, |
| caffe2::FLAGS_run_individual, |
| caffe2::FLAGS_warmup, |
| caffe2::FLAGS_iter); |
| |
| writeOutput( |
| workspace, |
| run_on_gpu, |
| caffe2::FLAGS_output, |
| caffe2::FLAGS_output_folder, |
| caffe2::FLAGS_text_output); |
| |
| return 0; |
| } |