blob: 68c5f295645fea5bdbb143d324ce91fc6e9101b7 [file] [log] [blame]
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
# @package parallel_workers
# Module caffe2.python.parallel_workers
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
'''
This module provides a python-land multithreaded mechanism for executing work.
Basic usage is as follows:
coordinator = parallel_workers.init_workers(
my_worker_fun,
worker_name="train"
)
...
coordinator.start()
First argument is the function to run in a loop on potentially multiple threads.
It has the call signature
worker_fun(worker_id)
Argument 'worker_name' is used to distinguish different workers,
such as workers processing train data or workers processing test data.
Optionally, one can define an "init function" that is called once before
threads start, and has call signature:
my_init_fun(worker_coordinator, global_coordinator)
Note that for data_parallel_models, init_workers will be called
for each GPU. Note that the 'coordinator' returned by the function is same
each time.
'''
import logging
import threading
import atexit
import time
import collections
import six
import traceback
from abc import ABCMeta, abstractmethod
log = logging.getLogger("parallel_workers")
log.setLevel(logging.INFO)
LOG_INT_SECS = 60
def init_workers(
worker_fun,
num_worker_threads=2,
worker_name="train",
init_fun=None,
external_loggers=None,
shutdown_fun=None,
):
global global_coordinator
metrics = Metrics(external_loggers)
# Create coordinator object
coordinator = WorkerCoordinator(
worker_name, init_fun, shutdown_fun=shutdown_fun)
# Launch fetch worker threads
worker_ids = [
global_coordinator.get_new_worker_id()
for i in range(num_worker_threads)
]
workers = [
threading.Thread(
target=run_worker,
name="parallel_workers worker id {}".format(worker_id),
args=[coordinator,
Worker(coordinator, worker_id, worker_fun, metrics)],
) for worker_id in worker_ids
]
coordinator._workers = workers
global_coordinator.add(coordinator)
return global_coordinator
class Metrics(object):
def __init__(self, external_loggers):
self._metrics = collections.defaultdict(lambda: 0)
self._external_loggers = external_loggers
def reset_metrics(self):
self._metrics = collections.defaultdict(lambda: 0)
def log_metrics(self):
if not self._external_loggers:
return
for logger in self._external_loggers:
try:
logger.log(self._metrics)
except Exception as e:
print("Failed to call ExternalLogger: {}".format(e))
def put_metric(self, key, value, count=True):
self._metrics[key] += value
if count:
count_key = '{}_count'.format(key)
self._metrics[count_key] += 1
class State():
six.add_metaclass(ABCMeta)
@abstractmethod
def start(self):
pass
@abstractmethod
def stop(self):
pass
@abstractmethod
def cleanup(self):
pass
class WorkerCoordinator(object):
def __init__(self, worker_name, init_fun, state=None, shutdown_fun=None):
self._active = True
self._started = False
self._workers = []
self._worker_name = worker_name
self._init_fun = init_fun
self._state = state
self._shutdown_fun = shutdown_fun
def is_active(self):
return self._active
def init(self, global_coordinator):
if self._init_fun and not self._started:
self._init_fun(self, global_coordinator)
def _start(self):
if self._started:
return
self._active = True
self._started = True
if self._state:
self._state.start()
for w in self._workers:
w.daemon = True
w.start()
def _stop(self, reason=None):
self._active = False
if reason is not None:
log.error("Data input failed due to an error: {}".format(reason))
if self._shutdown_fun and self._started:
self._shutdown_fun()
if self._state:
self._state.stop()
self._started = False
def _wait_finish(self, cleanup=None):
print("Wait for workers to die: {}".format(self._worker_name))
for w in self._workers:
if w != threading.current_thread():
w.join(5.0) # don't wait forever, thread may be blocked in i/o
success = True
for w in self._workers:
if w.isAlive():
print("Worker {} failed to close while waiting".format(w))
success = False
# Release memory for the scratch blobs
if success and self._state:
self._state.cleanup()
print("All workers terminated: {}".format(success))
return success
class GlobalWorkerCoordinator(object):
def __init__(self):
self._coordinators = []
self._fetcher_id_seq = 0
self._worker_ids = []
self.register_shutdown_handler()
def add(self, coordinator):
self._coordinators.append(coordinator)
def get_new_worker_id(self):
worker_id = self._fetcher_id_seq
self._worker_ids.append(worker_id)
self._fetcher_id_seq += 1
return worker_id
def get_worker_ids(self):
return self._worker_ids
def start(self):
for c in self._coordinators:
c.init(self)
c._start()
def stop(self):
all_success = True
for c in self._coordinators:
c._stop()
for c in self._coordinators:
success = c._wait_finish()
all_success = all_success and success
self._coordinators = []
return all_success
def stop_coordinator(self, worker_name):
'''
Stop a specific coordinator
'''
for c in self._coordinators:
if c._worker_name == worker_name:
c._stop()
c._wait_finish()
self._coordinators = [
c for c in self._coordinators
if c._worker_name != worker_name
]
def register_shutdown_handler(self):
def cleanup():
self.stop()
atexit.register(cleanup)
class Worker(object):
def __init__(
self,
coordinator,
worker_id,
worker_fun=None,
metrics=None
):
self._coordinator = coordinator
self._worker_id = worker_id
self._worker_fun = worker_fun
self._metrics = metrics
def start(self):
self._start_time = time.time()
def run(self):
self._worker_fun(self._worker_id)
def handle_exception(self, e):
traceback.print_exc()
logging.exception("Exception in worker", e)
self._coordinator._stop("Exception in worker {}: {}".format(
self._worker_id, e
))
def finish(self):
self._metrics.put_metric(
'worker_time', time.time() - self._start_time)
self._metrics.log_metrics()
global_coordinator = GlobalWorkerCoordinator()
def run_worker(coordinator, worker):
while coordinator.is_active():
worker.start()
try:
worker.run()
except Exception as e:
worker.handle_exception(e)
finally:
worker.finish()