blob: bcca5a2cb959ecd181c53cf507f21b68bc398c2b [file] [log] [blame]
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from caffe2.python import core, schema
from caffe2.python.layers.layers import ModelLayer
class MapToRange(ModelLayer):
"""
This layer aims to build a mapping from raw keys to indices within [0, max_index).
The mapping is continuously built during training. The mapping will be frozen during
evaluation and prediction. Unseen keys will be assigned to index 0.
"""
def __init__(
self, model,
input_record,
max_index,
name='map_to_range',
**kwargs
):
super(MapToRange, self).__init__(model, name, input_record, **kwargs)
assert max_index > 0
assert isinstance(input_record, schema.Scalar)
self.max_index = max_index
self.handler = self.create_param(
param_name='handler',
shape=None,
initializer=('LongIndexCreate', {'max_elements': self.max_index}),
optimizer=model.NoOptim
)
self.output_schema = schema.Struct(
('indices', schema.Scalar(
np.int64, self.get_next_blob_reference("indices")
)),
('handler', schema.Scalar(
np.void, self.handler
)),
)
def add_train_ops(self, net):
if self.input_record.field_type().base != np.int64:
keys = net.Cast(
self.input_record(),
net.NextScopedBlob("indices_before_mapping"),
to=core.DataType.INT64
)
else:
keys = self.input_record()
# Load keys into indices
indices = net.IndexGet([self.handler, keys],
self.output_schema.indices())
net.StopGradient(indices, indices)
def add_eval_ops(self, net):
net.IndexFreeze(self.handler, self.handler)
self.add_train_ops(net)
def add_ops(self, net):
self.add_eval_ops(net)