| # Copyright (c) 2016-present, Facebook, Inc. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ############################################################################## |
| |
| ## @package batch_softmax_loss |
| # Module caffe2.python.layers.batch_softmax_loss |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from caffe2.python import core, schema |
| from caffe2.python.layers.layers import ModelLayer |
| import numpy as np |
| |
| |
| class BatchSoftmaxLoss(ModelLayer): |
| def __init__( |
| self, |
| model, |
| input_record, |
| name='batch_softmax_loss', |
| **kwargs |
| ): |
| super(BatchSoftmaxLoss, self).__init__( |
| model, name, input_record, **kwargs) |
| |
| assert schema.is_schema_subset( |
| schema.Struct( |
| ('label', schema.Scalar()), |
| ('prediction', schema.Scalar()), |
| ), |
| input_record |
| ) |
| |
| self.output_schema = schema.Struct( |
| ( |
| 'softmax', schema.Scalar( |
| input_record.prediction.field_type(), |
| self.get_next_blob_reference('softmax') |
| ) |
| ), |
| ( |
| 'loss', schema.Scalar( |
| np.float32, self.get_next_blob_reference('loss') |
| ) |
| ), |
| ) |
| |
| def add_ops(self, net): |
| label = self.input_record.label.field_blobs() |
| if self.input_record.label.field_types()[0].base != np.int32: |
| label = [ |
| net.Cast(label, |
| net.NextScopedBlob('int32_label'), |
| to=core.DataType.INT32) |
| ] |
| |
| softmax_input = self.input_record.prediction.field_blobs() + label |
| |
| if 'weight' in self.input_record: |
| weight_blob = self.input_record.weight() |
| if self.input_record.weight.field_type().base != np.float32: |
| weight_blob = net.Cast( |
| weight_blob, |
| weight_blob + '_float32', |
| to=core.DataType.FLOAT |
| ) |
| |
| softmax_input += [weight_blob] |
| |
| net.SoftmaxWithLoss( |
| softmax_input, |
| self.output_schema.field_blobs() |
| ) |