| import torch._C as _C |
| from typing import Dict, Optional |
| |
| TensorProtoDataType = _C._onnx.TensorProtoDataType |
| OperatorExportTypes = _C._onnx.OperatorExportTypes |
| TrainingMode = _C._onnx.TrainingMode |
| _CAFFE2_ATEN_FALLBACK = _C._onnx._CAFFE2_ATEN_FALLBACK |
| |
| ONNX_ARCHIVE_MODEL_PROTO_NAME = "__MODEL_PROTO" |
| |
| producer_name = "pytorch" |
| producer_version = _C._onnx.PRODUCER_VERSION |
| |
| class ExportTypes: |
| r""""Specifies how the ONNX model is stored.""" |
| |
| PROTOBUF_FILE = "Saves model in the specified protobuf file." |
| ZIP_ARCHIVE = "Saves model in the specified ZIP file (uncompressed)." |
| COMPRESSED_ZIP_ARCHIVE = "Saves model in the specified ZIP file (compressed)." |
| DIRECTORY = "Saves model in the specified folder." |
| |
| |
| class CheckerError(Exception): |
| r"""Raised when ONNX checker detects an invalid model.""" |
| |
| pass |
| |
| |
| class SymbolicContext: |
| r"""Provides extra context for symbolic functions. |
| |
| Args: |
| params_dict (Dict[str, _C.IValue]): Mapping from graph initializer name to IValue. |
| env (Dict[_C.Value, _C.Value]): Mapping from Torch domain graph Value to ONNX domain graph Value. |
| cur_node (_C.Node): Current node being converted to ONNX domain. |
| onnx_block (_C.Block): Current ONNX block that converted nodes are being appended to. |
| """ |
| def __init__(self, params_dict, env, cur_node, onnx_block): |
| self.params_dict: Dict[str, _C.IValue] = params_dict |
| self.env: Dict[_C.Value, _C.Value] = env |
| # Current node that is being converted. |
| self.cur_node: _C.Node = cur_node |
| # Current onnx block that converted nodes are being appended to. |
| self.onnx_block: _C.Block = onnx_block |
| |
| def _export(*args, **kwargs): |
| from torch.onnx import utils |
| result = utils._export(*args, **kwargs) |
| return result |
| |
| |
| def export(model, args, f, export_params=True, verbose=False, training=TrainingMode.EVAL, |
| input_names=None, output_names=None, operator_export_type=OperatorExportTypes.ONNX, |
| opset_version=None, do_constant_folding=True, dynamic_axes=None, |
| keep_initializers_as_inputs=None, custom_opsets=None, |
| export_modules_as_functions=False): |
| r""" |
| Exports a model into ONNX format. If ``model`` is not a |
| :class:`torch.jit.ScriptModule` nor a :class:`torch.jit.ScriptFunction`, this runs |
| ``model`` once in order to convert it to a TorchScript graph to be exported |
| (the equivalent of :func:`torch.jit.trace`). Thus this has the same limited support |
| for dynamic control flow as :func:`torch.jit.trace`. |
| |
| Args: |
| model (torch.nn.Module, torch.jit.ScriptModule or torch.jit.ScriptFunction): |
| the model to be exported. |
| args (tuple or torch.Tensor): |
| |
| args can be structured either as: |
| |
| 1. ONLY A TUPLE OF ARGUMENTS:: |
| |
| args = (x, y, z) |
| |
| The tuple should contain model inputs such that ``model(*args)`` is a valid |
| invocation of the model. Any non-Tensor arguments will be hard-coded into the |
| exported model; any Tensor arguments will become inputs of the exported model, |
| in the order they occur in the tuple. |
| |
| 2. A TENSOR:: |
| |
| args = torch.Tensor([1]) |
| |
| This is equivalent to a 1-ary tuple of that Tensor. |
| |
| 3. A TUPLE OF ARGUMENTS ENDING WITH A DICTIONARY OF NAMED ARGUMENTS:: |
| |
| args = (x, |
| {'y': input_y, |
| 'z': input_z}) |
| |
| All but the last element of the tuple will be passed as non-keyword arguments, |
| and named arguments will be set from the last element. If a named argument is |
| not present in the dictionary, it is assigned the default value, or None if a |
| default value is not provided. |
| |
| .. note:: |
| If a dictionary is the last element of the args tuple, it will be |
| interpreted as containing named arguments. In order to pass a dict as the |
| last non-keyword arg, provide an empty dict as the last element of the args |
| tuple. For example, instead of:: |
| |
| torch.onnx.export( |
| model, |
| (x, |
| # WRONG: will be interpreted as named arguments |
| {y: z}), |
| "test.onnx.pb") |
| |
| Write:: |
| |
| torch.onnx.export( |
| model, |
| (x, |
| {y: z}, |
| {}), |
| "test.onnx.pb") |
| |
| f: a file-like object (such that ``f.fileno()`` returns a file descriptor) |
| or a string containing a file name. A binary protocol buffer will be written |
| to this file. |
| export_params (bool, default True): if True, all parameters will |
| be exported. Set this to False if you want to export an untrained model. |
| In this case, the exported model will first take all of its parameters |
| as arguments, with the ordering as specified by ``model.state_dict().values()`` |
| verbose (bool, default False): if True, prints a description of the |
| model being exported to stdout. In addition, the final ONNX graph will include the |
| field ``doc_string``` from the exported model which mentions the source code locations |
| for ``model``. If True, ONNX exporter logging will be turned on. |
| training (enum, default TrainingMode.EVAL): |
| * ``TrainingMode.EVAL``: export the model in inference mode. |
| * ``TrainingMode.PRESERVE``: export the model in inference mode if model.training is |
| False and in training mode if model.training is True. |
| * ``TrainingMode.TRAINING``: export the model in training mode. Disables optimizations |
| which might interfere with training. |
| input_names (list of str, default empty list): names to assign to the |
| input nodes of the graph, in order. |
| output_names (list of str, default empty list): names to assign to the |
| output nodes of the graph, in order. |
| operator_export_type (enum, default OperatorExportTypes.ONNX): |
| |
| * ``OperatorExportTypes.ONNX``: Export all ops as regular ONNX ops |
| (in the default opset domain). |
| * ``OperatorExportTypes.ONNX_FALLTHROUGH``: Try to convert all ops |
| to standard ONNX ops in the default opset domain. If unable to do so |
| (e.g. because support has not been added to convert a particular torch op to ONNX), |
| fall back to exporting the op into a custom opset domain without conversion. Applies |
| to `custom ops <https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html>`_ |
| as well as ATen ops. For the exported model to be usable, the runtime must support |
| these non-standard ops. |
| * ``OperatorExportTypes.ONNX_ATEN``: All ATen ops (in the TorchScript namespace "aten") |
| are exported as ATen ops (in opset domain "org.pytorch.aten"). |
| `ATen <https://pytorch.org/cppdocs/#aten>`_ is PyTorch's built-in tensor library, so |
| this instructs the runtime to use PyTorch's implementation of these ops. |
| |
| .. warning:: |
| |
| Models exported this way are probably runnable only by Caffe2. |
| |
| This may be useful if the numeric differences in implementations of operators are |
| causing large differences in behavior between PyTorch and Caffe2 (which is more |
| common on untrained models). |
| |
| * ``OperatorExportTypes.ONNX_ATEN_FALLBACK``: Try to export each ATen op |
| (in the TorchScript namespace "aten") as a regular ONNX op. If we are unable to do so |
| (e.g. because support has not been added to convert a particular torch op to ONNX), |
| fall back to exporting an ATen op. See documentation on OperatorExportTypes.ONNX_ATEN for |
| context. |
| For example:: |
| |
| graph(%0 : Float): |
| %3 : int = prim::Constant[value=0]() |
| # conversion unsupported |
| %4 : Float = aten::triu(%0, %3) |
| # conversion supported |
| %5 : Float = aten::mul(%4, %0) |
| return (%5) |
| |
| Assuming ``aten::triu`` is not supported in ONNX, this will be exported as:: |
| |
| graph(%0 : Float): |
| %1 : Long() = onnx::Constant[value={0}]() |
| # not converted |
| %2 : Float = aten::ATen[operator="triu"](%0, %1) |
| # converted |
| %3 : Float = onnx::Mul(%2, %0) |
| return (%3) |
| |
| If PyTorch was built with Caffe2 (i.e. with ``BUILD_CAFFE2=1``), then |
| Caffe2-specific behavior will be enabled, including special support |
| for ops are produced by the modules described in |
| `Quantization <https://pytorch.org/docs/stable/quantization.html>`_. |
| |
| .. warning:: |
| |
| Models exported this way are probably runnable only by Caffe2. |
| |
| opset_version (int, default 13): The version of the |
| `default (ai.onnx) opset <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_ |
| to target. Must be >= 7 and <= 15. |
| do_constant_folding (bool, default True): Apply the constant-folding optimization. |
| Constant-folding will replace some of the ops that have all constant inputs |
| with pre-computed constant nodes. |
| dynamic_axes (dict<string, dict<int, string>> or dict<string, list(int)>, default empty dict): |
| |
| By default the exported model will have the shapes of all input and output tensors |
| set to exactly match those given in ``args``. To specify axes of tensors as |
| dynamic (i.e. known only at run-time), set ``dynamic_axes`` to a dict with schema: |
| |
| * KEY (str): an input or output name. Each name must also be provided in ``input_names`` or |
| ``output_names``. |
| * VALUE (dict or list): If a dict, keys are axis indices and values are axis names. If a |
| list, each element is an axis index. |
| |
| For example:: |
| |
| class SumModule(torch.nn.Module): |
| def forward(self, x): |
| return torch.sum(x, dim=1) |
| |
| torch.onnx.export(SumModule(), (torch.ones(2, 2),), "onnx.pb", |
| input_names=["x"], output_names=["sum"]) |
| |
| Produces:: |
| |
| input { |
| name: "x" |
| ... |
| shape { |
| dim { |
| dim_value: 2 # axis 0 |
| } |
| dim { |
| dim_value: 2 # axis 1 |
| ... |
| output { |
| name: "sum" |
| ... |
| shape { |
| dim { |
| dim_value: 2 # axis 0 |
| ... |
| |
| While:: |
| |
| torch.onnx.export(SumModule(), (torch.ones(2, 2),), "onnx.pb", |
| input_names=["x"], output_names=["sum"], |
| dynamic_axes={ |
| # dict value: manually named axes |
| "x": {0: "my_custom_axis_name"}, |
| # list value: automatic names |
| "sum": [0], |
| }) |
| |
| Produces:: |
| |
| input { |
| name: "x" |
| ... |
| shape { |
| dim { |
| dim_param: "my_custom_axis_name" # axis 0 |
| } |
| dim { |
| dim_value: 2 # axis 1 |
| ... |
| output { |
| name: "sum" |
| ... |
| shape { |
| dim { |
| dim_param: "sum_dynamic_axes_1" # axis 0 |
| ... |
| |
| keep_initializers_as_inputs (bool, default None): If True, all the |
| initializers (typically corresponding to parameters) in the |
| exported graph will also be added as inputs to the graph. If False, |
| then initializers are not added as inputs to the graph, and only |
| the non-parameter inputs are added as inputs. |
| This may allow for better optimizations (e.g. constant folding) by |
| backends/runtimes. |
| |
| If ``opset_version < 9``, initializers MUST be part of graph |
| inputs and this argument will be ignored and the behavior will be |
| equivalent to setting this argument to True. |
| |
| If None, then the behavior is chosen automatically as follows: |
| |
| * If ``operator_export_type=OperatorExportTypes.ONNX``, the behavior is equivalent |
| to setting this argument to False. |
| * Else, the behavior is equivalent to setting this argument to True. |
| |
| custom_opsets (dict<str, int>, default empty dict): A dict with schema: |
| |
| * KEY (str): opset domain name |
| * VALUE (int): opset version |
| |
| If a custom opset is referenced by ``model`` but not mentioned in this dictionary, |
| the opset version is set to 1. Only custom opset domain name and version should be |
| indicated through this argument. |
| |
| export_modules_as_functions (bool or set of type of nn.Module, default False): Flag to enable |
| exporting all ``nn.Module`` forward calls as local functions in ONNX. Or a set to indicate the |
| particular types of modules to export as local functions in ONNX. |
| This feature requires ``opset_version`` >= 15, otherwise the export will fail. This is because |
| ``opset_version`` < 15 implies IR version < 8, which means no local function support. |
| Module variables will be exported as function attributes. There are two categories of function |
| attributes. |
| |
| 1. Annotated attributes: class variables that have type annotations via |
| `PEP 526-style <https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations>`_ |
| will be exported as attributes. |
| Annotated attributes are not used inside the subgraph of ONNX local function because |
| they are not created by PyTorch JIT tracing, but they may be used by consumers |
| to determine whether or not to replace the function with a particular fused kernel. |
| |
| 2. Inferred attributes: variables that are used by operators inside the module. Attribute names |
| will have prefix "inferred::". This is to differentiate from predefined attributes retrieved from |
| python module annotations. Inferred attributes are used inside the subgraph of ONNX local function. |
| |
| * ``False``(default): export ``nn.Module`` forward calls as fine grained nodes. |
| * ``True``: export all ``nn.Module`` forward calls as local function nodes. |
| * Set of type of nn.Module: export ``nn.Module`` forward calls as local function nodes, |
| only if the type of the ``nn.Module`` is found in the set. |
| |
| Raises: |
| CheckerError: If the ONNX checker detects an invalid ONNX graph. Will still export the |
| model to the file ``f`` even if this is raised. |
| """ |
| |
| from torch.onnx import utils |
| return utils.export(model, args, f, export_params, verbose, training, |
| input_names, output_names, operator_export_type, opset_version, |
| do_constant_folding, dynamic_axes, |
| keep_initializers_as_inputs, custom_opsets, |
| export_modules_as_functions) |
| |
| |
| def export_to_pretty_string(*args, **kwargs) -> str: |
| r""" |
| Similar to :func:`export`, but returns a text representation of the ONNX |
| model. Only differences in args listed below. All other args are the same |
| as :func:`export`. |
| |
| Args: |
| add_node_names (bool, default True): Whether or not to set |
| NodeProto.name. This makes no difference unless |
| ``google_printer=True``. |
| google_printer (bool, default False): If False, will return a custom, |
| compact representation of the model. If True will return the |
| protobuf's `Message::DebugString()`, which is more verbose. |
| |
| Returns: |
| A UTF-8 str containing a human-readable representation of the ONNX model. |
| """ |
| from torch.onnx import utils |
| return utils.export_to_pretty_string(*args, **kwargs) |
| |
| def _optimize_trace(graph, operator_export_type): |
| from torch.onnx import utils |
| return utils._optimize_graph(graph, operator_export_type) |
| |
| |
| def select_model_mode_for_export(model, mode): |
| r""" |
| A context manager to temporarily set the training mode of ``model`` |
| to ``mode``, resetting it when we exit the with-block. A no-op if |
| mode is None. |
| |
| Args: |
| model: Same type and meaning as ``model`` arg to :func:`export`. |
| mode: Same type and meaning as ``training`` arg to :func:`export`. |
| """ |
| |
| from torch.onnx import utils |
| return utils.select_model_mode_for_export(model, mode) |
| |
| |
| def _run_symbolic_function(*args, **kwargs): |
| from torch.onnx import utils |
| return utils._run_symbolic_function(*args, **kwargs) |
| |
| |
| def _run_symbolic_method(*args, **kwargs): |
| from torch.onnx import utils |
| return utils._run_symbolic_method(*args, **kwargs) |
| |
| |
| def is_in_onnx_export(): |
| r""" |
| Returns True iff :func:`export` is running in the current thread |
| """ |
| |
| from torch.onnx import utils |
| return utils.is_in_onnx_export() |
| |
| |
| def register_custom_op_symbolic(symbolic_name, symbolic_fn, opset_version): |
| r""" |
| Registers ``symbolic_fn`` to handle ``symbolic_name``. See |
| "Custom Operators" in the module documentation for an example usage. |
| |
| Args: |
| symbolic_name (str): The name of the custom operator in "<domain>::<op>" |
| format. |
| symbolic_fn (Callable): A function that takes in the ONNX graph and |
| the input arguments to the current operator, and returns new |
| operator nodes to add to the graph. |
| opset_version (int): The ONNX opset version in which to register. |
| """ |
| from torch.onnx import utils |
| utils.register_custom_op_symbolic(symbolic_name, symbolic_fn, opset_version) |
| |
| |
| def unregister_custom_op_symbolic(symbolic_name, opset_version): |
| r""" |
| Unregisters ``symbolic_name``. See |
| "Custom Operators" in the module documentation for an example usage. |
| |
| Args: |
| symbolic_name (str): The name of the custom operator in "<domain>::<op>" |
| format. |
| opset_version (int): The ONNX opset version in which to unregister. |
| """ |
| |
| from torch.onnx import utils |
| utils.unregister_custom_op_symbolic(symbolic_name, opset_version) |
| |
| |
| def is_onnx_log_enabled(): |
| r""" |
| Returns True iff ONNX logging is turned on. |
| """ |
| return _C._jit_is_onnx_log_enabled() |
| |
| |
| def enable_log(): |
| r""" |
| Enables ONNX logging. |
| """ |
| _C._jit_set_onnx_log_enabled(True) |
| |
| |
| def disable_log(): |
| r""" |
| Disables ONNX logging. |
| """ |
| _C._jit_set_onnx_log_enabled(False) |
| |
| |
| def set_log_stream(stream_name="stdout"): |
| r""" |
| Set output stream for ONNX logging. |
| |
| Args: |
| stream_name (str, default "stdout"): Only ``stdout`` and ``stderr`` are supported |
| as `stream_name`. |
| """ |
| _C._jit_set_onnx_log_output_stream(stream_name) |
| |
| |
| def log(*args): |
| r""" |
| A simple logging facility for ONNX exporter. |
| |
| Args: |
| args: Arguments are converted to string, concatenated together with a newline |
| character appended to the end, and flushed to output stream. |
| """ |
| _C._jit_onnx_log(*args) |