blob: 710b7c9d898376592532f9294e224f8080c17643 [file] [log] [blame]
#include "caffe2/operators/rsqrt_op.h"
#include <algorithm>
#include <functional>
#include "caffe2/core/context_gpu.h"
namespace caffe2 {
namespace {
template <typename T>
inline __host__ __device__ T CubeCUDA(const T x) {
return x * x * x;
}
template <typename T>
__global__ void
RSqrtGradientCUDAKernel(const int size, const T* dY, const T* Y, T* dX) {
CUDA_1D_KERNEL_LOOP(i, size) {
#if __CUDA_ARCH__ >= 350
dX[i] = __ldg(dY + i) * CubeCUDA(__ldg(Y + i)) * static_cast<T>(-0.5);
#else
dX[i] = dY[i] * CubeCUDA(Y[i]) * static_cast<T>(-0.5);
#endif
}
}
} // namespace
template <>
template <typename T>
bool RSqrtGradientFunctor<CUDAContext>::Forward(
const std::vector<int>& dY_dims,
const std::vector<int>& /* Y_dims */,
const T* dY,
const T* Y,
T* dX,
CUDAContext* context) const {
const int size = std::accumulate(
dY_dims.cbegin(), dY_dims.cend(), 1, std::multiplies<int>());
RSqrtGradientCUDAKernel<T>
<<<CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(size, dY, Y, dX);
return true;
}
REGISTER_CUDA_OPERATOR(
RSqrt,
UnaryElementwiseOp<
TensorTypes<float>,
CUDAContext,
RSqrtFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
RSqrtGradient,
BinaryElementwiseOp<
TensorTypes<float>,
CUDAContext,
RSqrtGradientFunctor<CUDAContext>>);
} // namespace caffe2